博碩士論文 102322020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.131.13.93
姓名 林鈺盛(Yu-sheng Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 矩形鋼管混凝土柱考慮二次彎矩效應之軸壓-彎矩互制曲線研究
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
★ 九二一地震大里奇蹟社區倒塌原因之探討★ 群樁基礎之最低價設計
★ 應用遺傳演算法於群樁基礎低價化設計★ 應用Discrete Lagrangian Method於群樁基礎低價化設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用非線性之纖維元素法 (Fiber element method)建立考慮二次彎矩效應之矩形填充型鋼管混凝土柱 (Concrete-filled steel tube, CFT)的軸壓雙向彎矩互制曲線。本研究採用的纖維元素法經由假設柱身之變形函數後,能考慮二次彎矩效應,並計算能施加於柱端之最大彎矩,由分析不同軸壓力所對應之彎矩強度可建立考慮二次彎矩效應之軸壓彎矩互制曲線。多組矩形CFT柱之軸壓彎矩試驗數據用來驗證纖維元素法分析CFT柱之合理性,並藉由參數研究探討纖維元素法、AISC-LDFD與ACI之適用範圍,結果發現纖維元素法在分析CFT柱受單向彎矩時能準確的計算彎矩強度,AISC與ACI則於柱長較短的案例較能計算出合理的彎矩強度。本研究將不同寬厚比、材料強度與有效柱長的CFT柱互制曲線歸納為一般化的互制公式,做為建立互制曲線之建議公式。
摘要(英) This study presents nonlinear fiber element method determine the axial load-biaxial bending moment interaction curves of concrete filled steel tubular beam-columns (CFT). Second-order effect is considered by assuming the deflected shape of the CFT beam-columns. Determine the maximum moment at the column ends for different axial compression loads by fiber element analysis method, the interaction curves are constructed and second-order effect is considered. Analytical results are verified by comparing with the experimental results. For the cases that the fiber element analysis method, AISC-LRFD and ACI can accurately predict the flexural strength, the parameters of the cases are studied in this research. The predicted results of fiber element analysis method show good agreement with the uniaxial bending tests. The AISC-LRFD and ACI is suitable predict the flexural strength of short CFT beam-columns. To construct the general interaction equations, interaction curves of CFT beam-columns with different width-to-thickness ratio, material strength and column lengths are considered in the equations.
關鍵字(中) ★ 填充型鋼管混凝土柱
★ 軸壓-彎矩互制曲線
★ 纖維元素法
★ 二次彎矩效應
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究內容 10
第二章 AISC與ACI設計CFT梁柱構材的檢核程序 13
2.1 引言 13
2.2 AISC-LRFD-2010對CFT梁柱的檢核方法一 13
2.3 AISC-LRFD-2010對CFT梁柱的檢核方法二 20
2.4 ACI檢核 CFT梁柱的方法 21
第三章 以纖維元素法建立考慮二次彎矩效應之矩形CFT梁柱構件的互制曲線 32
3.1 基本假設 32
3.2 建立纖維元素之應變與應力 32
3.3 考慮初始幾何缺陷與偏心距之梁柱最大軸壓強度Poa 36
3.4 纖維元素法分析梁柱之軸壓 雙向彎矩互制曲線 39
第四章 纖維元素法考慮二次彎矩效應之分析結果與試驗結果的比較 49
4.1 引言 49
4.2 纖維元素法計算強度與單向彎矩試驗強度之比較 50
4.2.1 b/t對單軸偏心彎矩強度比較之影響 56
4.2.2 B1對單軸偏心彎矩強度比較之影響 57
4.2.3 對單軸偏心彎矩強度比較之影響 59
4.3 纖維元素法計算強度與單向彎矩試驗強度於同軸壓比較 60
4.4 纖維元素法計算強度與單向及雙向彎矩試驗強度比較 62
4.5 以混凝土最大應力為 分析對分析結果的影響 65
第五章 軸壓 單向彎矩互制曲線之建議公式 81
5.1 引言 81
5.2 建立軸壓 彎矩強度互制公式 81
5.2.1 梁柱斷面強度之軸壓 彎矩互制曲線 83
5.2.2 彎矩放大因子 87
5.3 軸壓 彎矩交互影響曲線之比較 90
第六章 結論與建議 118
6.1 結論 118
6.2 建議 120
參考文獻 121
參考文獻 [1] 許協隆、莊德興,「雙軸彎矩矩形鋼管混凝土柱設計與應用(中鼎工程股份有限公司計畫)」,財團法人中技社,台北 (2013)。
[2] ACI-318, “Building Code Requirements for structural concrete and commentary,” Detroit (MI), American Concrete Institute (2011).
[3] AISC, “Specification for Structural Steel Buildings,” American Institute of Steel Construction. Chicago, IL. (2010).
[4] Bridge, R. Q., “Concrete filled steel tubular columns,” School of Civil Engineering, the university of Sydney, Australia, Research Report No. R283 (1976).
[5] Bridge, R. Q., and O’Shea, M. D., “Behavior of thin-walled steel box sections with or without internal restraint,” Journal of Constructional Steel Research, Vol. 47, pp. 73-91 (1998).
[6] Chen, S. F., Teng, J. G., and Chan, S.L., “Design of biaxially loaded short composite columns of arbitrary section,” Journal of Structural Engineering, Vol. 127, pp. 678-685 (1997).
[7] Choi, Y. H., Foutch, D. A., and LaFave, J. M., “New approach to AISC PM interaction curve for square concrete filled tube (CFT) beam-columns,” Engineering Structures, Vol. 28, pp. 1586-1598 (2006).
[8] Choi, Y. H., Kim, K. S., and Choi, S. M., “Simplified PM interaction curve for square steel tube filled with high-strength concrete,” Thin-walled Structures, Vol. 46, pp.506-515 (2007).
[9] Chung, J., Tsuda, K., and Matsui, C., “High-strength concrete filled square tube columns subjected to axial loading,” The Seventh East Asia-Pacific Conference on Structural Engineering & Construction, Kochi, Japan, Vol. 2, pp.955-960 (1999).
[10] EI-Tawil, S., and Sanz-Picon, C. F., Deierlein, G. G., “Evaluation of ACI 318 and AISC (LRFD) Strength Provisions for Composite Beam-Columns,” Journal of Constructional Steel Research, Vol. 34, pp. 103-123 (1995).
[11] El-Tawil, S., and Deierlein, G. G., “Strength and ductility of concrete encased composite columns,” Journal of Structural Engineering, Vol. 125, pp. 1009-1019 (1999).
[12] Evirgen, B., Tuncan, A., and Taskin, K., “Structural behavior of concrete filled steel tubular sections (CFT/CFSTs) under axial compression,” Thin-Walled Structures, Vol. 80, pp. 46-56 (2014).
[13] Ellobody, E., and Young, B., “Nonlinear analysis of concrete-filled steel SHS and RHS columns,” Thin-Walled Structures, Vol. 44, pp. 919-930 (2006).
[14] Furlong, R.W., “Strength of steel-encased concrete beam–columns,” Journal of Structural Division, pp. 113-124 (1967).
[15] Ge, H. B., and Usami, T., “Strength of concrete-filled thin-walled steel box columns: Experiments,” Journal of Structural Engineering, Vol. 118, pp. 3036-3054 (1992).
[16] Grauers, M., “Composite columns of hollow steel sections filled with high strength concrete,” Goteborg (Sweden): Chalmers University of Technology, Ph.D. thesis (1993).
[17] Guo, L., Zhang S., Kim W.J., and Ranzi, G., “Behavior of square hollow steel tubes and steel tubes filled with concrete,” Thin-Walled Structures, Vol. 45, pp. 961-973 (2007).
[18] Hajjar, J. F., and Gourley, B. C., “Representation of concrete-filled steel tube cross section strength,” Journal of Structural Engineering, Vol. 122, pp. 1327-1336 (1996).
[19] Han, L. H., “Tests on stub columns of concrete-filled RHS sections,” Journal of Constructional Steel Research, Vol. 58, pp. 353-372 (2002).
[20] Hernández-Figueirido, D., Romero, M. L., Bonet, J. L., and Montalvá, J. M., “Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities,” Journal of Constructional Steel Research, Vol. 68, pp. 107-117 (2012).
[21] Knowles, R. B., and Park, R., “Strength of concrete-filled steel tubular columns,” Journal of Structural Division, Vol. 95, pp. 2565–2587 (1969).
[22] Kwon, Y. B., and Jeong, I. K., “Resistance of rectangular concrete-filled tubular (CFT) sections to the axial load and combined axial compression and bending,” Thin-Walled Structures, Vol. 79, pp. 178-186 (2014).
[23] Lakshmi, B., and Shanmugam, N. E., “Nonlinear analysis of in-filled steel-concrete composite columns,” Journal of Constructional Steel Research, Vol. 128, pp. 922-933 (2002).
[24] Liang, Q. Q., and Uy, B., “Theoretical study on the post-local buckling of steel plates in concrete-filled box columns,” Computers and Structures, Vol. 75, pp. 479-490 (2000).
[25] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Strength of concrete-filled steel box columns with local buckling effects,” Australian Journal of Structural Engineering, Vol. 7,pp. 145-155 (2005).
[26] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns,” Journal of Constructional Steel Research, Vol. 63, pp. 396-405 (2007).
[27] Liang, Q. Q., “Nonlinear analysis of short concrete filled steel tubular beam–columns under axial load and biaxial bending,” Journal of Constructional Steel Research, Vol. 64, pp. 295-304 (2008).
[28] Liang, Q. Q., Patel, V. I., and Hadi, M. N. S., “Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation,” Journal of Constructional Steel Reasearch, Vol. 75, pp.64-71 (2012).
[29] Mursi, M., and Uy, B., “Strength of concrete filled steel box columns incorporating interaction buckling,” Journal of Structural Engineering, Vol. 129, pp. 626-638 (2003).
[30] Matsui, C., Tsuda, K., and Ishibashi, Y., ‘‘Slender concrete filled steel tubular columns under combined compression and bending,’’ Proc., 4th Pacific Structural Steel Conference, Singapore, Pergamon, Vol. 3, pp. 29-36 (1995).
[31] Muñoz, P. R., and Hsu, C. T. T., “Behavior of biaxially loaded concrete-encased composite columns,” Journal of Structural Engineering, Vol. 123, pp. 1163-71 (1997).
[32] Patel, V. I., Liang, Q. Q., and Hadi, M. N. S., “High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior,” Journal of Constructional steel research, Vol. 70, pp.368-376 (2012).
[33] Schneider, S. P., “Axially loaded concrete-filled steel tubes,” Journal of Structural engineering, Vol. 124, pp. 1125-1138 (1998).
[34] Shakir-Khalil, H., and Zeghiche, J., “Experimental behavior of concrete-filled rectangular hollow-section columns,” Struct. Eng., Vol. 67(19), 346-353 (1989).
[35] Shakir-Khalil, H., and Mouli, M., “Further tests on concrete-filled rectangular hollow section columns,” Struct. Eng., Vol. 68(20), 405-413 (1990).
[36] Tomii, M., and Sakino, K., “Elastic–plastic behavior of concrete filled square steel tubular beam–columns,” Transactions of the Architectural Institute of Japan, Vol. 280, pp. 111-120 (1979).
[37] Tomii, M., Yoshimura, K., and Morishita, Y., “ Experimental studies on concrete filled steel tubular stub columns under concentric loading,” In: Proceedings of the international colloquium on stability of structures under static and dynamic loads, pp. 718-741 (1977).
[38] Varma, A. H., Ricles, J. M., Sause, R., and Lu, L., “Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns,” Journal of Constructional Steel Research, Vol. 58, pp. 725-758 (2002).
[39] Vrcelj, Z., and Uy, B., “Behavior and design of steel square hollow sections filled with high strength concrete,” Aust. J. Struct. Eng., Vol. 3, pp. 153-170 (2002).
[40] Uy, B., “Local and post-local buckling of concrete filled steel welded box columns,” Journal of Constructional Steel Research, Vol. 47, pp. 47-72 (1998).
[41] Uy, B., “Strength of concrete-filled steel box columns incorporating local buckling,” Journal of Structural Engineering, Vol. 126, pp. 341-352 (2000).
[42] Wright, H. D., “Local stability of filled and encased steel sections,” Journal of Structural Engineering, Vol. 121, pp. 1382-1388 (1995).
[43] Yu, M., Zha, X., Ye, J., and Li, Y., “A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression,” Engineering Structures, Vol. 49, pp. 1-10 (2013).
[44] Zhang, W., and Shahrooz, B. M., “Comparison between ACI and AISC for concrete-filled tubular columns,” J. Struct. Eng., 125:1213-1223 (1999).
指導教授 莊德興 審核日期 2015-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明