參考文獻 |
[1] 鄭振東編譯,「換流器驅動技術」,建興出版社,民國八十年
[2] D.D.L. Chung, Thermal Interface Materials, J. Mater. Perform. 10 (2001) 56–59.
[3] R. Skuriat, J. F. Li, P. A. Agyakwa, N. Mattey, P. Evans and C. M. Johnson, Degradation of Thermal Interface Materials for High-Temperature Power Electronics Applications, Microelectron. Reliab. 53 (2013) 1933–1942.
[4] B. Smith, T. Brunschwiler and B. Michel, Comparison of Transient and Static Test Methods for Chip-to-Sink Thermal Interface Characterization, Microelectron. J. 40 (2008) 1379-1386.
[5] R. Kempers, P. Kolodner, A. Lyon and A. J. Robinson, A High-Precision Apparatus for The Characterization of Thermal Interface Materials, Rev Sci Instrum. 80 (2009) 095111-1-095111-11.
[6] R. Mahajan, C. P. Chiu and G. Chrysler, Cooling a Microprocessor Chip, Proc IEEE 94 (2006) 1476-1486.
[7] B. Czerny, M. Lederer, B. Nagl, A. Trnka, G. Khatibi and M. Thoben, Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions, Microelectron. Reliab. 52 (2012) 2353-2357.
[8] M. Bouarroudj, Z. Khatir, J.P. Ousten, F. Badel, L. Dupont, S. Lefebvre, Degradation behavior of 600 V-200 A IGBT modules under power cycling and high temperature environment conditions, Microelectron. Reliab. 47 (2007) 1719-1724.
[9] O. Schilling, M. Schäfer, K. Mainka, M. Thoben, F. Sauerland, Power cycling testing and FE modelling focussed on Al wire bond fatigue in high power IGBT modules, Microelectron. Reliab. 52 (2012) 2347-2352.
[10] A. Benmansour, S. Azzopardi, J. C. Martin, E. Woirgard, Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions, Microelectron. Reliab. 47 (2007) 1730-1734.
[11] H. Lu, C. Bailey and C. Yin, Design for reliability of power electronics modules, Microelectron. Reliab. 49 (2009) 1250–1255.
[12] T. Lhommeau, X. Perpin, C. Martin, R. Meuret, M. Mermet-Guyennet and M. Karama, Thermal fatigue effects on the temperature distribution inside IGBT modules for zone engine aeronautical applications, Microelectron. Reliab. 47 (2007) 1779-1783.
[13] X. Perpina, J.F. Serviere, X. Jorda, A. Fauquet, S. Hidalgo, J. Urresti-Ibanez, J. Rebollo and M. Mermet-Guyennet, IGBT module failure analysis in railway applications, Microelectron. Reliab. 48 (2008) 1427-1431.
[14] X. Perpina, A. Castellazzi, M. Piton, M. Mermet-Guyennet and J. Millan, Failure-relevant abnormal events in power Converters considering measured IGBT module temperature inhomogeneities, Microelectron. Reliab. 47 (2007) 1784-1789.
[15] Y. P. Zhang, X. L. Yu, Q. K. Feng and R. T. Zhang, Thermal performance study of integrated cold plate with power module, Appl. Therm. Eng. 29 (2009) 3568-3573.
[16] Y. J. Lee, P. S. Lee and S. K. Chou, Hotspot mitigating with obliquely finned microchannel heat sink - an experimental study, IEEE Trans. Compon. Packag. Technol. 3 (2013) 1332-1341.
[17] C. K. Liu, S. J. Yang, Y. L. Chao, K. Y. Liou and C. C. Wang, Effect of non-uniform heating on the performance of the microchannel heat sinks, Int. Commun. Heat Mass 43 (2013) 57-62.
[18] MITSUBISHI ELECTRIC, IGBT Modules Application Note, Mar, 2014
[19] P. K. Schelling, L. Shi and K. E. Goodson, Managing Heat for Electronics, Mater Today 8 (2005) 30–35.
[20] Y. S. Xu and D. D. L. Chung, Increasing the Thermal Conductivity of Boron Nitride and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle Surface Treatments, Compos Interfaces 7 (2000) 243–256.
[21] X. Sun, A. Yu, P. Ramesh, E. Bekyarova, M. E. Itkis and R. C. Haddon, Oxidized Graphite Nanoplatelets as an Improved Filler for Thermally Conducting Epoxy-Matrix Composites, J Electron Packaging 133 (2011) 020905.
[22] J. L. Xiang and L. T. Drzal, Thermal Conductivity of Exfoliated Graphite Nanoplatelet Paper, Carbon 49 (2011) 773–778.
[23] COMSOL Multiphysics® Modeling Software,皮托科技股分有限公司熱傳模組範例.
[24] 張添昌,盧弘翊, 發展能源電子轉換器三維熱流模型建模技術服務結案報
[25] 李龍育,ANSYS Multiphysics FLUENT,虎門科技股份有限公司,July,11,2013.
|