博碩士論文 102323011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.16.82.7
姓名 張家溢(JHANG,JIA-YI)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 1070鋁合金超音波輔助等通彎角擠製之研究
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 以有限元素法與反應曲面法分析兩點增量成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以實驗方式探討超音波振動輔助對於等通道彎角擠製 (ECAE)之影響。本文超音波加載方式分為軸向加載及橫向加載兩種, 以不同加載方式、不同振幅大小、不同沖頭行程位置加載及不同沖 頭擠製速度作為加工參數,探討超音波對於 Al-1070 試片成型力及 試片機械性質影響。並以有限元素軟體 Deform 3D 對於超音波振 動輔助 ECAE 進行分析。
實驗結果顯示,在超音波輔助 ECAE 製程中,不論是單獨施加 軸向、橫向或是同時雙軸向加載,對於降低成型力及提升試片硬度 均有良好的效應。利用有限元素模擬分析,調整有限元素模型內的 接觸條件及材料性質建立其等效模型,提出超音波軟化及摩擦力減 少兩種機制都可能存在於超音波輔助 ECAE 的製程中。
摘要(英) This study aims to explore experimentally the influence
of ultrasonic vibration on equal channel angular extrusion (ECAE).The ultrasonic system divided in axial direction and lateral direction. In different loading methods, different amplitude, different load, punch stroke position and different punch speed extruded as the processing parameters, to explore the effect of forming force and mechanical property of the A1-1070 specimen. Also in Deform-3D finite element software to analyze the equal channel angular extrusion(ECAE) that applied with the ultrasonic vibration.
The experimental results shows that ultrasonic vibration on ECAE, whether in axial direction, lateral direction or simultaneous biaxial loading, for lower forming force and enhance the hardness of the specimen both have good effect. Using the finite element to analyze, adjust the contact conditions and material properties of finite element model to build the equivalent model. Putting forward the acoustic softening and friction reduction are both may exist in process of ultrasonic vibration on ECAE.
關鍵字(中) ★ 超音波振動
★ 等通道彎角擠製
★ 聲波軟化
關鍵字(英) ★ ECAE
★ ECAP
★ ultrasonic vibration
★ acoustic softening
論文目次 目錄
摘要 .............................................. iv
目錄 ............................................. vii
表目錄 ............................................. x
圖目錄 ........................................... xiv
第一章 緒論........................................1
1.1 前言 ............................................... 1 1.2 文獻回顧 ........................................... 3 1.2.1 超音波輔助塑性加工:............................. 3 1.2.2 等通道彎角擠製加工:............................. 6 1.3 研究動機 ........................................... 9
第二章 基本理論...................................10
2.1 等通道彎角擠製(ECAE)製程 ........................... 10 2.2超音波基本理論..................................... 10 2.2.1 體積效應 ...................................... 11 2.2.2 表面效應 ...................................... 12
第三章 實驗設備及方法 ............................. 15
3.1實驗設備........................................... 15 vii
3.1.1 ECAE 模具...................................... 15 3.1.2 超音波振動系統 ................................ 15 3.1.3 100 噸油壓機................................... 16 3.1.4 資料結取系統 .................................. 16 3.1.5 慢速切割機 .................................... 16 3.1.6 拋光研磨機 .................................... 16 3.1.7 維克氏硬度機 .................................. 17 3.1.8 拉伸試驗機 .................................... 17
3.2 實驗方法........................................ 17 3.2.2 試片製作 ...................................... 17 3.2.3 實驗條件 ...................................... 18 3.2.4 實驗步驟 ...................................... 19 3.2.5 拉伸試驗 ...................................... 20 3.2.6 維克氏硬度量測................................. 21
第四章 實驗結果與討論 ............................. 22
4.1 超音波振動對於 ECAE 成型力之影響.................... 22 4.1.1 不同行程加載軸向超音波對於 ECAE 成型力之影響 .... 22 4.1.2 不同擠製速度下軸向超音波對於 ECAE 成型力之影響 .. 31 4.1.3 軸向超音波振幅對於 ECAE 成型力之影響 ........... 32 4.1.4 不同行程加載橫向超音波對於 ECAE 成型力之影響.... 32 4.1.5 不同擠製速度下橫向超音波對於 ECAE 成型力之影響 .. 41
4.1.6 橫向超音波振幅對於 ECAE 成型力之影響 ........... 41 viii
4.1.7 雙軸向超音波振動輔助 ECAE 對於成型力之影響 ..... 42 4.2 超音波振動輔助 ECAE 對於試片硬度之影響.............. 43
4.2.1 不同行程位置加載軸向超音波 ECAE 對於試片硬度之影響 .................................................... 44 4.2.2 不同擠製速度下軸向超音波振動輔助 ECAE 對於試片硬度之 影響 ................................................ 45 4.2.3 軸向超音波振幅對於 ECAE 試片硬度之影響 ......... 46
4.2.3 不同行程位置加載橫向超音波對於 ECAE 試片硬度之影響 .................................................... 47 4.2.4 不同擠製速度下橫向超音波振動輔助 ECAE 對於試片硬度之 影響 ................................................ 48 4.2.6 橫向超音波振幅對於 ECAE 試片硬度之影響 ......... 50 4.2.7 雙軸向超音波振動輔助 ECAE 對於試片硬度之影響 .... 51 4.3 拉伸試驗 .......................................... 52 4.4 超音波振動輔助 ECAE 有限元素分析.................... 53 4.4.1 傳統 ECAE 有限元素分析 ......................... 53 4.4.2 軸向超音波振動輔助 ECAE 有限元素分析 ........... 54 4.4.3 超音波輔助 ECAE 等效模型 ....................... 55
第五章 結論與建議.................................58
5-1 結論 .............................................. 58 5-2 建議 .............................................. 60
參考文獻 .......................................... 61
參考文獻 [1] V. M. Segal, "Materials processing by simple shear," Materials Science and Engineering A197, pp. 157-164, 1995.
[2] S. M. Fatemi-Varzaneh and A. Zarei-Hanzaki, "Accumulative back extrusion (ABE) processing as a novel bulk deformation method," Materials Science and Engineering A 504, pp. 104-106, 2009.
[3] A. P. Zhilyaev 且 . T. G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Progress in Materials Science Volume 53, Issue 6, p. 893–979, 2008.
[4] F. Blaha and B. Langenecker, "Dehnung von Zink-Kristallen unter Ultraschalleinwirkung," Naturwissenschaften Volume 42, p. 556, 1955.
[5] J. Tsujina, T. Ueoka, H. Sato and K. Takiguchi, "Characteristics of ultrasonic bendingof metal plates using a longitudinal vibration die and punch," IEEE Ultrasonic Symposium, pp. 863-866, 1992.
[6] T. Jimma, Y. Kasuga, N. Iwaki, O. Miyazawa, E. Mori, K. Ito
and H. Hatano, "An application ofultrasonic vibration to the 61
deep drawing process," Journal of Materials Processing Technology Vol.80-81, pp. 406-412, 1998.
[7] K. Siegert, "Influencing the friction in metal forming processes by superimposing ultrasonic waves," CIRP Annals-Manufacturing Technology, Vol. 50, pp. 195-200, 2001.
[8] M. Murakawa and M. Jin, "The utility of radially and ultrasonically vibrated dies in the wiredrawing process," Journal of Materials Processing Technology, Vol. 113, pp. 81-86, 2001.
[9] M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J. C. Hung and Y. C. Tsai, "Simulation of ultrasonic-vibration drawing using the finite element (FEM)," Journal of MaterialsProcessing Technology, Vol. 140, pp. 30-35, 2003.
[10] J. C. Hung and C. H. Hung, "The influence of ultrasonic-vibration on hot upsetting of aluminum alloy," Ultrasonics 43, p. 692–698, 2005.
[11] Y. Daud, M. Lucas and Z. Huang, "Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium," Journal of Materials Processing Technology, pp. 179-190, 2007.
[12] Y. Ashida and H. Aoyama, "Press forming using ultrasonic 62
vibration," Journal of Materials ProcessingTechnology,
Vol. 187-188, pp. 118-122, 2007.
[13] J. C. Hung and Y. C. Tsai, "Frictional effect of ultrasonic-vibration on upsetting," Ultrasonics,43, pp. 277-284, 2007.
[14] Y. Liu, S. Suslov, Q. Han, C. Xu and L. Hua, "Microstructure of the pure copper produced by upsetting with ultrasonic vibration," Materials Letters, Vol. 67, pp. 52-55, 2012.
[15] Z. Yao, G. Y. Kim, L. Faidley, Q. Zou, D. Mei and Z. Chen, "Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting," Journal of Materials Processing Technology 212, p. 640– 646, 2012.
[16] Z. Yao, G. Y. Kim, Z. Wang, L. Faidley, Q. Zou , D. Mei and Z. Chen, "Acoustic softening and residual hardening in aluminum: Modeling and experiments," International Journal of Plasticity 39 , pp. 75-87, 2012.
[17] A. T. Witthauer, Z. Yao and G. Y. K. PhD, "Characterization of the Effects of High-Frequency Vibration on Alu- minum and Copper Upsetting," ICOMM 2012 No.51, 2012.
[18] F. Djavanroodi, H. Ahmadian, K. Koohkan and R. Naseri,
"Ultrasonic assisted-ECAP," Ultrasonics, Vol. 53, p. 1089– 63
1096, 2013.
[19] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, "The shearing characteristics associated with equal-channel angular pressing," Materials Science and Engineering: A, 257(2), pp. 328-332, 1998.
[20] M. Furukawa and Z. Horita, "Factors influencing the shearing patterns in equal-channel angular pressing," Materials Science and Engineering: A, 332(1), pp. 97-109, 2002.
[21] W. J. Kim, J. C. Namgung and J. K. Kim, "Analysis of strain uniformity during multi-pressing in equalchannel angular extrusion," Scripta Materialia Vol. 53, pp. 293-298, 2005.
[22] A. V. Nagasekhar, T. H. Yip and H. P. Seow, "Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing," Journal of Materials Processing Technology, Vol. 192–193, pp. 449-452, 2007.
[23] S. Xu, G. Zhao, X. Ma and G. Ren, "Finite element analysis and optimization of equalchannel angular pressing for producing ultra-fine grained materials," Journal of Materials ProcessingTechnology, Vol. 184, pp. 209-216, 2007.
[24] V. Patil, U. Chakkingal and T. S. Prasanna Kumar, "Study of
channel angle influence on material flow and strain 64
inhomogeneity in equal channel angular pressing using 3D finite element simulation," Journal of Materials Processing Technology, Vol. 209, pp. 89-95, 2009.
[25] A. V. Nagasekhar, S. C. Yoon, Y. Tick-Hon and H. Kim, "An experimental verification of the finite element modeling of equal channel angular pressing," Computational Materials Science, Vol. 46, pp. 347-351, 2009.
[26] F. Djavanroodi and M. Ebrahimi, "Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation," Materials Science and Engineering: A, Vol. 527, pp. 1230-1235, 2010.
[27] R. Luri, C. Luis Pérez, D. Salcedo, I. Puertas, J. Leó, I. Pérez and J. P. Fuertes, "Evolution of damage in AA-5083 processed by equal channel angular extrusion using different die geometries," Journal of Materials Processing Technology, Vol. 211, pp. 48-56, 2011.
[28] S. Jana and N. S. Ong, "Effect of punch clearance in the high-speed blanking of thick metals using an accerlator designed for a mechanical press," Journal of Mechanical Working Technology, Vol. 19, pp. 55-72, 1989.
[29] G. E. Nevill and F. R. Brotzen, "The effect of vibration on 65
the static yield strength of low-carbon steel," Proc. Am. Soc. Testing Materials, 57, pp. 751-755, 1957.
[30]陳昱華, “超音波振動輔助等通道彎角擠製之初步研究, 碩士論 文,” 國立中央大學, 2013.
[31]黃彬碩, “超音波振動方式輔助等通道彎角擠製之研究, 碩士論 文,” 國立中央大學, 2014.
[32] “B557M−14 Standard Test Methods for Tension Testing Wrought and Cast Aluminum and Magnesium-Alloy Products”.Annual Book of ASTM Standard.
[33] W. F. Hosford 且 R. M. Caddell, Metal Forming: Mechanics and Metallurgy, Prentice-Hall, Inc. A Division of Simom & Schuster Englewood Cliffs, NJ 07632, 1983.
[34]洪榮崇, “超音波振動於鋁合金成型加工的摩擦條件效應研究, 博士論文,” 國立交通大學, 2006.
[35] . V. Patil Basavaraj, U. Chakkingal 且 T. S. Prasanna Kumar, “Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation,” Journal of materials processing technology , 209(1), pp. 89-95, 2009.
[36] 文. 李, 金. 管 且 煥. 石, “氧化鋯陶瓷眼模不銹鋼抽線之理 論與實驗分析,” 中國機械工程學會第二十四屆全國學術研討會
66
論文集, pp. 3196-3200, 23、24 11 2007.
[37] V. C. Kumar and I. M. Hutchings, "Reduction of the sliding friction of metals by the application oflongitudinal or transverse ultrasonic vibration," Tribology International, Vol. 37, pp. 833-840, 2004.
[38] H. Jiang, Z. Fan and C. Xie, "3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion," Materials Science and Engineering: A, Vol. 485, pp. 409-414, 2008.
[39] T. Wang, D. Liu, G. Gong and N. Song, "Investigations on thenanocrystallization of 40Cr using ultrasonic surface rolling processing," Applied Surface Science, Vol.255, pp. 1824-1829, 2008.
指導教授 葉維磬(YEH WEI CHING) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明