博碩士論文 102323020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.145.63.131
姓名 蘇子瑜(Tzu-Yu Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(The Study of Electrochromic Device Using Tungsten and Nickel Oxide Films by Physical Vapor Deposition)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之目的在於在可撓性基板(PET)上製備多層薄膜(IZO/NiO/Ta2O5/WO3/IZO)的電致變色元件。WO3作為主要電致變色材料、Ta2O5為固態電解質、NiO則為離子儲存層其中,外圍以IZO包夾作為透明導電層使用。實驗共可分為兩部分,為選取沉積各層薄膜的最佳化參數,實驗的第一部份為各層薄膜性質之研究,研究範圍包括沉積速率、結構分析、光學性質分析、電性分析與化學成分分析等,而使用之儀器有表面輪廓儀、X光繞射儀、拉曼光譜儀、紫外-可見光譜儀、能量散射光譜儀與X射線光電子能譜儀等。

在實驗第二部分分別對於氧化鎢與氧化鎳之電致變色與離子儲存的效果。實驗可分為定電壓測試與循環伏安法測試,再結合變色前後的可見光穿透率即可得知通入單位電量可對薄膜光學性質造成變化的程度。

經過以上兩部份的各層材料分析後,由其中選出製備電致變色元件的最佳化參數。在研究最後利用選出之參數成功製備出可撓性電致變色元件。
摘要(英) WO3 is known to be an electrochromic material which can switch its color between transparent (bleach state) and dark blue (color state) by externally applied voltages. In this study, a stack of IZO/NiO/Ta2O5/WO3/IZO electrochromic device was fabricated on flexible substrate (polyethylene terephthalate, PET) by sputtering. Before stacking all layers, each material was separately deposited on a substrate and tested for their structure, compositions, properties and functions. These characterizations for materials are carried out by the following instruments: surface profiler and FE-SEM to inspect the thickness and surface morphology; XRD and Raman spectrometers to examine microstructures; EDX and XPS for the study of chemical compositions; UV-visible-NIR spectrometer for the assessment of optical properties; 4-point probe and Hall effect sensor to measure the electrical resistivity. The electrochromic function was achieved by the chemical insertion of cations (Li+) and electrons into WO3 and NiO layers before stacking. The potential static and cyclic voltammetry then is used to test the efficiency of color change in the devices. Based on the transparency of films by UV-visible-NIR spectroscopy, coloration efficiency and energy consumption in electrochromic function, we can determine the optimal sets of process parameters in sputtering. These parameters are crucial in the fabrication of flexible electrochromic devices by current PVD technologies for the display in mobile devices.
關鍵字(中) ★ 電致變色
★ 氧化鎢
★ 可撓性基板
★ 循環伏安法
關鍵字(英) ★ electrochromism
★ flexible display
★ tungsten oxide
★ polyethylene terephthalate
★ cyclic voltammetry
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix

CHAPTER ONE
INTRODUCTION 1
1.1 Introduction to “Electrochromism” 1
1.2 Literature Review 2
1.2.1 Electrochromic Device 2
1.2.2 Optical Band Gaps 3
1.2.3 Coloration Efficiency 4
1.2.4 Charge Reversibility & Power Consumption 5
1.3 Scope and Objective 5

CHAPTER TWO
EXPERIMENT PROCEDURES 7
2.1 Physical Vapor Deposition 8
2.1.1 Substrate Preparation 8
2.1.2 Film Deposition 9
2.2 Tools for Material Characterization 11
2.2.1 Surface Profiler 11
2.2.2 Field Emission Scanning Electron Microscope 12
2.2.3 X-ray Diffractometer 12
2.2.4 Energy-dispersive X-ray Spectrometer 13
2.2.5 Raman Spectroscopy 14
2.2.6 X-ray Photoelectron Spectrometer 15
2.2.7 UV-VIS-NIR Spectrometer 16
2.2.8 Four-point Probe 17
2.2.9 Hall Effect Sensor 18
2.3 Electrochemical Test for WO3-IZO and NiO-IZO Stack 19

CHAPTER THREE
RESULTS & DISCUSSION I 21
3.1 Deposition Rate of All Films 21
3.2 XRD Spectra of All Films 23
3.3 Raman Spectra for WO3 and NiO Films 25
3.4 Elemental and Chemical Composition from EDS of All Films 28
3.5 Elemental Ratios from XPS of all films 30
3.6 UV-Vis-NIR Spectra 34
3.7 Optical Band Gaps Estimate for All Films 36
3.8 Electrical Resistivity for IZO Films 39

CHAPTER FOUR
RESULTS & DISCUSSION II 40
4.1 Electrochemical Test I - Potentiostat 40
4.2 Coloration Efficiency 42
4.3 Electrochemical Test II - Cyclic Voltammetry 44
4.4 Charge Reversibility and Power Consumption 45

CHAPTER FIVE
PARAMETERS SELECTION OF DEVICE 46

CHAPTER SIX
CONCLUSIONS 48

CHAPTER SEVEN
REFERENCE 49
參考文獻 C. G. Granqvist, "Electrochromic tungsten oxide films: review of progress 1993-1998," Sol. Energ. Mat. Sol. C., 60 (2000) 201-262.
J. S. Hale, M. DeVries, B. Dworak, J. A. Woollam, "Visible and infrared optical constants of electrochromic materials for emissivity modulation applications," Thin Solid Films, 313 (1998) 205-209.
J. S. Hale, J. A. Woollam, "Prospects for IR emissivity control using electrochromic structures," Thin Solid Films, 339 (1999) 174-180.
C. Trimble, M. DeVries, J. S. Hale, D. W. Thompson, T. E. Tiwald, J. A. Woollam, "Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide," Thin Solid Films, 355-356 (1999) 26-34.
C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, 1995.
J. Nagai, G. D. McMeeking, Y. Saitoh, "Durability of electrochromic glazing," Sol. Energ. Mat. Sol. C., 56(3-4) (1999) 309-319.
J. Tauc, R. Grigorovici, A. Vancu, "Optical properties and electronic structure of amorphous germanium," Phys. Status. Solidi., 15(2) (1966) 627-637.
J. Tauc, "Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull., 3 (1968) 37-46.
H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, "Electrical and optical properties of TiO2 anatase thin Films," J. Appl. Phys., 75(4) (1994) 2042-2047.
M. M. Rahman, K. M. Krishna, T. Soga, T. Jimba, M. Umeno, "Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 Thin Films," J. Phys. Chem. Solid., 60(2) (1999) 201-210.
P. Sharma, M. Vashistha, I. P. Jain, "Optical Properties of Ge20Se80-XBix Thin Films," J. Optoelect. Adv. Mater., 7(5) (2005) 2647-2654.
J. Yu, J. Xiong, B. Cheng, S. Liu, "Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin Films with Enhanced Photocatalytic Activity,” Appl. Catal. B, 60(3-4) (2005) 211-221.
J. R. Bellingham, W. A. Phillips, C. J. Adkins, "Electrical and optical properties of amorphous indium oxide," J. Phys.: Condens. Matter, 2 (1990) 6207-6221.
S. Adhikari, D. Sarkar High Efficient Electrochromic WO3 Nanofibers Electrochimica Acta 138 (2014) 115-123.
A. Karuppasamy, A. Subrahmanyam, "Studies on electrochromic smart windows based on titanium doped WO3 thin films," Thin Solid Films, 516 (2007) 175-178.
C.-C. Jaing, C. -J. Tang, C. -C. Chan, K.-H. Lee, C.-C. Kuo, H. -C. Chen, C. -C. Lee, Optical constants of electrochromic films and contrast ratio of reflective electrochromic devices, Appl. Opt. 53(4) (2014) A154-A158.
K. Sauvet, L.Sauques, A.Rougier, "Electrochromic properties of WO3 as a single layer and in a full device: From the visible to the infrared," J. of Phys.Chem. Solids, 71 (2010) 696-699.
K. Ravindranath, R. A. Mashelkar, "Polyethylene Terephthalate - I. Chemistry, Thermodynamics and Transport Properties," Chem. Eng. Sci., 41(9) (1986) 2197-2214.
S. Sun, X. Chang, T. Liu, Y. Lu, Y. Wang, “Solvothermal synthesis of tungsten oxide mesocrystals and their electrochromic performance,” Mater. Lett., 105 (2013) 54-57.
S. H. Lee, H. M. Cheong, J.G. Zhang, A. Mascarenhas, D. K. Benson, “Electrochromic mechanism in a-WO3−y thin films,” Appl. Phys. Lett., 74 (1999) 242.
R. Garcia-Sanchez, T.Ahmido, D. Casimir, S. Baliga, P. Misra, "Thermal Effects Associated with the Raman Spectroscopy of WO3 Gas-Sensor Materials," J. Phys. Chem. A, 117 (2013) 13825-13831.
Y. S. Zou, Y. C. Zhang, D. Lou, H. P. Wang, L. Gu, Y. H. Dong, K. Dou, X. F. Song, H. B. Zeng, "Structural and optical properties of WO3 films deposited by pulsed laser deposition," J. Alloy. Compd., 583 (2014) 465-470.
P. Barczuk, A. Krolikowska, A. Lewera, K.Miecznikowski, R. Solarska, J. Augustynski, "Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films," Electrochim. Acta, 104 (2013) 282-288.
K. Hari Krishna, O. M. Hussain, C.M. Julien, "Electrochromic properties of nanocrystalline WO3 thin films grown on flexible substrates by plasma-assisted evaporation technique," Appl. Phys. A, 99 (2010) 921-929.
Y. S. Huang, Y. Z. Zhang, X. T. Zeng, X. F. Hu, "Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics," Appl. Surf. Sci., 202 (2002) 104-109.
J. E. Flores-Mena, J. Díaz-Reyes, J. A. Balderas-López "Structural properties of WO3 dependent of the annealing temperature deposited by hot-filament metal oxide deposition," Rev. Mex. Fis., 58 (2012) 504-509.
M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, M. Figlars, "Infrared and Raman Study of WO3 Tungsten Trioxides and WO3,xH2O Tungsten Trioxide Hydrates," J. Solid State Chem., 67 (1987) 235-247.
V. Madhavi, P. Kondaiah, O. M. Hussain, S. Uthanna, "Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films" Physica B, 454 (2014) 145-147.
G. Bodurov, P. Stefchev, T. Ivanova, K. Gesheva, “Investigation of electrodeposited NiO films as electrochromic material for counter electrodes in smart windows” Mater. Lett., 117 (2014) 270-272.
D.Y. Jiang, J.M. Qin, X. Wang, S. Gao, Q.C. Liang, J.X. Zhao, “Optical properties of NiO thin films fabricated by electron beam evaporation” Vacuum, 86 (2012) 1083-1086.
N. Mironova-Ulmane, A. Kuzmin, I. Sildos, M. Pärs, “Polarisation dependent Raman study of single-crystal nickel oxide”, Cent. Eur. J. Phys., 9 (2011) 1096-1099.
V. Gowthami, M. Meenakshi, P. Perumal, R. Sivakuma, C. Sanjeeviraja, “Preparation of rod shaped nickel oxide thin films by a novel and cost effective nebulizer technique” Mater. Sci. Semicond. Process., 27 (2014) 1042-1049.
M. Marciuš, M. Ristic´, M. Ivanda, S. Music´, “Formation and microstructure of nickel oxide films” J. Alloy. Compd., 541 (2012) 238-243.
E. Cazzanelli, A. Kuzmin, G. Mariotto, N. Mironova-Ulmane, “Study of vibrational and magnetic excitations in NicMg1-cO solid solutions by raman spectroscopy” J. Phys. Cond. Matter, 15 (2003) 2045-2052.
V. Gowtham, P. Perumal, R. Sivakumar, C. Sanjeeviraja, “Structural and optical studies on nickel oxide thin film prepared by nebulizer spray technique” Physica. B, 452 (2014) 1-6.
G. F. Cai, C. D. Gua, J. Zhang, P. C. Liu, X. L. Wang, Y. H. You, J. P. Tu, “Ultra fast electrochromic switching of nanostructured NiO films electrodeposited from choline-based ionic liquid” Electrochim. Acta, 87 (2013) 341-347.
Huanwen Wang, Yalan Wang, Xuefeng Wang, “Pulsed laser deposition of the porous nickel oxide thin film at room temperature for high-rate pseudocapacitive energy storage” Electrochem. Commun., 18 (2012) 92-95.
Junmin Nan, Yong Yang, Zugeng Lin, "In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution" Electrochim. Acta, 50 (2006) 4873-4879.
Van der Pauw, L. J., "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Res. Reports, 13 (1958) 1-9.
Van der Pauw, L. J., "A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape," Philips Tech. Rev., 20 (1958) 220-224.
C. Li, J. H. Hsieh, S. J. Liu, W. S. Lin, “Electrical and Structural Study on Indium Zinc Oxide Thin Films by Sputtering Process”, Surf. Coat. Technol., 231 (2013) 471-477.
P. J. Goodhew, “Electron Microscopy and Analysis,” 120-121, Wykeham, London, 1975.
D. Kim, T. Nam, J. Park, J. Gatineau, H. Kim, "Growth characteristics and properties of indium oxide and indium-doped zinc oxide by atomic layer deposition," Thin Solid Film, 587 (2015) 83-87.
W. Kim, J. H. Bang, H. S. Uhm, S. H. Lee, J. S. Park, "Effects of post plasma treatment on material properties and device characteristics in indium zinc oxide thin film transistors," Thin Solid Films, 519 (2010) 1573-1577.
B. Y. Su, S. Y. Chu, Y. D. Juang, H. Lee, "Improved Negative Bias Stress Stability of IZO Thin Film Transistors via Post-Vacuum Annealing of Solution Method," ECS J. Solid State Sci. Technol., 2(7) (2013) Q99-Q103.
W. F. Chung, T. C. Chang, H. W. Li, T. Y. Tseng, Y. H. Tai, "Effects of Post-Deposition Annealing Atmosphere and Duration on Sol-Gel Derived Amorphous Indium-Zinc-Oxide Thin Film Transistors," ECS Transactions, 41 (6) (2011) 265-271.
T. Yang, Y. Zhang, C. Li, "Chemical and structural analysis of solvothermal synthesized tungsten oxide nanotube without template and its hydrogen sensitive property," J. Alloy. Compd., 584 (2014) 546-552.
J. C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, "Systematic XPS studies of metal oxides, hydroxides and peroxides," Phys. Chem. Chem. Phys., 2 (2000) 1319-1324.
C. Bittencourt, A. Felten, F. Mirabella, P. Ivanov, E. Llobet, M. A. P. Silva, L. A. O. Nunes, J. J. Pireaux, "High-resolution photoelectron spectroscopy studies on WO3 films modified by Ag addition," J. Phys. Condens. Mat., 17 (2005) 6813-6822.
F. Y. Xie, L. Gong, X. Liu, Y. T. Tao, W. H. Zhang, S. H. Chen, H. Meng, J. Chen, "XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment," J. Electron Spectrosc., 185 (2012) 112-118.
Y. S. Kim, "Thermal treatment effects on the material and gas-sensing properties of room-temperature tungsten oxide nanorod sensors," Sensor Actuat. B-Chem., 137 (2009) 297-304.
H. Y. Wong, C. W. Ong, R. W. M. Kwok, K. W. Wong, S. P. Wong, W. Y. Cheung, "Effects of ion beam bombardment on electrochromic tungsten oxide films studied by X-ray photoelectron spectroscopy and Rutherford back-scattering," Thin Solid Films, 376 (2000) 131-139.
T. B. Tam Dao, K. N. Pham, Y. L. Cheng, S. S. Kim, B. T. Phan, "Correlation between crystallinity and resistive switching behavior of sputtered WO3 thin films," Curr. Appl. Phys., 14 (2014) 1707-1712.
A. Siokou, G. Leftheriotis, S. Papaefthimiou, P. Yianoulis, "Effect of the tungsten and molybdenum oxidation states on the thermal coloration of amorphous WO3 and MoO3 films," Surf. Sci., 482-485 (2001) 294-299.
G. Leftheriotis, S. Papaefthimiou, P. Yianoulis, A. Siokou, "Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films," Thin Solid Films, 384 (2001) 298-306.
A. P. Grovenor, M. C. Biesinger, R. St. C. Smart, N. S. McIntyre, "New interpretations of XPS spectra of nickel metal and oxides," Surf. Sci., 600 (2006) 1771-1779.
K. S. Kim, N. Winograd, "X-Ray Photoelectron Spectroscopic Studies of Nickel-Oxide Surfaces using Oxygen and Argon Ion-Bombardment," Surf. Sci., 43 (1974) 625-643.
J. L. Rodriguez, M. A. Valenzuela, T. Poznyak, L. Lartundo, I. Chairez, "Reactivity of NiO for 2,4-D degradation with ozone: XPS studies," J. Hazard. Mater., 262 (2013) 472-481.
T. F. Chen, A. J. Wang, B. Y. Shang, Z. L. Wu, Y. L. Li, Y. S. Wang, "Property modulation of NiO films grown by radio frequency magnetron sputtering," J. Alloys Compd., 643 (2015) 167-173.
Y. Zhao, H. Wang, C. Wu, Z. F. Shi, F. B. Gao, W. C. Li, G. G. Wu, B. L. Zhang, G. T. Du, " Structures, electrical and optical properties of nickel oxide films by radio frequency magnetron sputtering," Vacuum, 103 (2014) 14-16.
E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, K. Kostov, "XPS study of N2 annealing effect on thermal Ta2O5 layers on Si," Appl. Surf. Sci., 225 (2004) 86-99.
S. Hashimoto, C. Tanaka, A. Murata, T. Sakurada, "Formulation for XPS Spectral Change of oxides by Ar Ion Bombardment: Application of the Formulation to Ta2O5 System," J. Surf. Anal, 13 (2006) 14-18.
P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films, 515 (2007) 8450-8454.
W. S. Choi, H. Jo, M. S. Kwon, B. J. Jung, “Control of electrical properties and gate bias stress stability in solution-processed a-IZO TFTs by Zr doping,” Curr. Appl. Phys., 14 (2014) 1831-1836.
G. F. Li, J. Zhou, Y. W. Huang, M. Yang, J. H. Feng, Q. Zhang, “Indium zinc oxide semiconductor thin films deposited by dc magnetron sputtering at room temperature,” Vacuum, 85 (2010) 22-25.
Y. Yan, X. F. Zhang, Y. T. Ding, “Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature,” Thin Solid Films, 532 (2013) 79-83.
A. Subrahmanyam, A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells, 91 (2007) 266-274.
C. Charles, N. Martin, M. Devel, J. Ollitrault, A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films, 534 (2013) 275-281.
H. Simchi, B. E. McCandless, T. Meng, W. N. Shafarman, “Structural, optical, and surface properties of WO3 thin films for solar cells,” J. Alloys Compd., 617 (2014) 609-615.
I. Castro-Hurtadoa, T. Taveraa, P. Yurrita, N. Pérez, A. Rodriguez, “Structural and optical properties of WO3 sputtered thin films nanostructured by laser interference lithography,” Appl. Surf. Sci., 276 (2013) 229-235.
S. Y. Tsai, M. H. Hon, Y. M. Lu, “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid-State Electron., 63 (2011) 37-41.
H. Sato, T. Minami, S. Takata, T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films, 236 (1993) 27-31.
T. C. Peng, X. H. Xiao, X. Y. Hand, X. D. Zhou, W. Wu, F. Ren, C. Z. Jiang, “Characterization of DC reactive magnetron sputtered NiO films using spectroscopic ellipsometry,” Appl. Surf. Sci., 257 (2011) 5908-5912.
K. Jagadeesh Kumar, N. Ravi Chandra Raju, A. Subrahmanyam, “Properties of pulsed reactive DC magnetron sputtered tantalum oxide (Ta2O5) thin films for photocatalysis,” Surf. Coat. Technol., 205 (2011) S261-S264.
A. X. Wei, Z. X. Ge, X. H. Zhao, J. Liu, Y. Zhao, “Electrical and optical properties of tantalum oxide thin films prepared by reactive magnetron sputtering,” J. Alloys Compd., 509 (2011) 9758-9763.
W. M. Yang, Y. W. Liu, Q. Zhang, Y. X. Leng, H. F. Zhou, P. Yang, J. Y. Chen, N. Huang, “Biomedical response of tantalum oxide films deposited by DC reactive unbalanced magnetron sputtering,” Surf. Coat. Technol. 201 (2007) 8062-8065.
S. V. Jagadeesh Chandra, S. Uthanna, G. Mohan Rao, “Effect of substrate temperature on the structural, optical and electrical properties of dc magnetron sputtered tantalum oxide films,” Appl. Surf. Sci., 254 (2008) 1953-1960.
I. Shiyanovskaya, M. Hepel, E. Tewksburry, Electrochromism in electrodeposited nanocrystalline WO3 films I J. New Mat. Electrochem. Systems 3 (2000) 241-247.
D. S. Dalavi, R. S. Devan, R. A. Patil, R. S. Patil, Y. -R. Ma, S. B. Sadale, I. Y. Kim, J. -H. Kim P. S. Patil, Efficient electrochromic performance of nanoparticulate WO3 thin films J. Mater. Chem. C, 1 (2013) 3722-3728.
S.-H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, A. W. Czanderna, S. K. Deb, Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency Appl. Phys. Lett. 75(11) (1999) 1541-1543.
L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, Y. Xie, High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3 2H2O ultrathin nanosheets Sci Rep. 3 (2013) 1936.
指導教授 李雄(Shyong Lee) 審核日期 2015-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明