參考文獻 |
1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
2. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
3. R. Satio, G.D.a.M.S.D., Physical Properties of Carbon Nanotube. Imperial College Press, London, 1998.
4. Li, X.S., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
5. Stoller, M.D., et al., Graphene-Based Ultracapacitors. Nano Letters, 2008. 8(10): p. 3498-3502.
6. Tech., G.t.p.b.B.G., 2013.
7. He, Y.M., et al., Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes. Acs Nano, 2013. 7(1): p. 174-182.
8. Edwards, R.S. and K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale, 2013. 5(1): p. 38-51.
9. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc, 1958: p. 80 (6), p 1339–1339.
10. He, H.Y., et al., A new structural model for graphite oxide. Chemical Physics Letters, 1998. 287(1-2): p. 53-56.
11. Paredes, J.I., et al., Graphene oxide dispersions in organic solvents. Langmuir, 2008. 24(19): p. 10560-10564.
12. Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010. 2(12): p. 1015-1024.
13. Su, C.Y., et al., Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. Acs Nano, 2010. 4(9): p. 5285-5292.
14. Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008. 3(9): p. 563-568.
15. Su, C.Y., et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. Acs Nano, 2011. 5(3): p. 2332-2339.
16. Pierson, H.O., Handbook of Chemical Vapour Deposition. Noyes Publications, Park Ridge, NJ 1992.
17. Yu, Q.K., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 1031-1033.
18. Nezich, D., A. Reina, and J. Kong, Electrical characterization of graphene synthesized by chemical vapor deposition using Ni substrate. Nanotechnology, 2012. 23(1): p. 9.
19. Li, X.S., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9(12): p. 4268-4272.
20. Hao, Y.F., et al., The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science, 2013. 342(6159): p. 720-723.
21. Wu, W., et al., Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology, 2012. 23(3): p. 8.
22. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-578.
23. Wang, Y., et al., Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. Acs Nano, 2011. 5(12): p. 9927-9933.
24. Wang, D.Y., et al., Clean-Lifting Transfer of Large-area Residual-Free Graphene Films. Advanced Materials, 2013. 25(32): p. 4521-4526.
25. Su, C.Y., et al., Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters, 2011. 11(9): p. 3612-3616.
26. https://graphene-supermarket.com/CVD-Graphene-on-Metals/.
27. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2): p. 4.
28. Yu, Q.K., et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 2011. 10(6): p. 443-449.
29. Huang, P.Y., et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011. 469(7330): p. 389-392.
30. Han, G.H., et al., Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth. Nano Letters, 2011. 11(10): p. 4144-4148.
31. Lee, J.H., et al., Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 2014. 344(6181): p. 286-289.
32. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9–10): p. 351-355.
33. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3): p. 902-907.
34. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
35. Meyer, J.C., et al., The structure of suspended graphene sheets. Nature, 2007. 446(7131): p. 60-63.
36. Du, X., et al., Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 2008. 3(8): p. 491-495.
37. Aleman, B., et al., Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes. Acs Nano, 2010. 4(8): p. 4762-4768.
38. Lee, C.K., et al., Monatomic Chemical-Vapor-Deposited Graphene Membranes Bridge a Half-Millimeter-Scale Gap. Acs Nano, 2014. 8(3): p. 2336-2344.
39. Celebi, K., et al., Ultimate Permeation Across Atomically Thin Porous Graphene. Science, 2014. 344(6181): p. 289-292.
40. Smith, A.D., et al., Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Letters, 2013. 13(7): p. 3237-3242.
41. 吳裕弘, 簡昭珩. 應用熱壓崁入技術製作電容式壓力感測器. 大同大學, 機械工
程研究所碩士論文, 中華民國九十七年七月
42. Sherif, S., et al., Modeling of Sensitivity of fabricated Capacitive Pressure Sensor.
IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference, p.3166 - 3169 |