參考文獻 |
參考文獻
[1] F. A. Williams, Combustion Theory, Second Ed., Addison-Wesley, Redwood City, 1985.
[2] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
[3] R. G. Abdel-Gayed, D. Bradley, M. Lawes,” Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 414, pp. 389-413, 1987.
[4] R. K. Cheng, I. G. Shepherd,” The influence of burner geometry on premixed turbulent flame propagation”, Combustion and Flame, Vol. 85, pp. 7-26, 1991.
[5] D. Bradley, A. K. C. Lau, M. Lawes,” Flame stretch rate as a determinant of turbulent burning velocity”, Philosophical Transactions: Physical Sciences and Engineering, Vol. 338, pp. 359-387, 1992.
[6] A. N. Linpatnikov, J. Chomiak,” Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations”, Progress in Energy and Combustion Science, Vol. 28, pp. 1-74, 2002.
[7] A. N. Linpatnikov, J. Chomiak,” Molecular transport effects on turbulent flame propagation and structure”, Progress in Energy and Combustion Science, Vol. 31, pp. 1-73, 2005.
[8] J. F. Driscoll,” Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities,” Progress in Energy and Combustion Science, Vol. 34, pp. 91-134, 2008.
[9] H. Kobayashi, H. Kawazoe,” Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames”, Proceedings of the Combustion Institute, Vol. 28, pp. 375-382, 2000.
[10] D. Bradley, M. Z. Haq, R. A. Hicks, T. Kitagawa, M. Lawes, C. G. W. Sheppard, R. Woolley,” Turbulent burning velocity, burned gas distribution, and associated flame surface definition”, Combustion and Flame, Vol. 133, pp. 415-430, 2003.
[11] R. K. Cheng, D. Littlejohn, P. A. Strakey, T. Sidwell,” Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions”, Proceedings of the Combustion Institute, Vol. 32, pp. 3001-3009, 2009.
[12] C. C. Liu, S. S. Shy, H. C. Chen, M. W. Peng,” On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure,” Proceedings of the Combustion Institute, Vol. 33, pp. 1293-1299, 2011.
[13] S. Daniele, P, Jansohn, J. Mantzaras, K. Boulouchos,” Turbulent flame speed for syngas at gas turbine relevant conditions”, Proceedings of the Combustion Institute, Vol. 33, pp. 2937-2944, 2011.
[14] C. C. Liu, S. S. Shy, M. W. Peng, C. W. Chiu, Y. C. Dong,” High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers”, Combustion and Flame, Vol. 159, pp. 2608-2619, 2012.
[15] S. Chaudhuri, F. Wu, D. Zhu, C. K. Law,” Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames”, Physical Review Letters, Vol. 108, pp. 044503-1-5, 2012.
[16] S. Chaudhuri, F. Wu, C. K. Law,” Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations”, Physical Review E, Vol. 88, pp. 033005-1-13, 2013.
[17] P. Tamadonfar, Ö. L. Gülder,” Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames”, Combustion and Flame, Vol. 161, pp. 3154-3165, 2014.
[18] F. Wu, A. Saha, S. Chaudhuri, C. K. Law,” Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction,” Proceedings of the Combustion Institute, Vol. 35, pp. 1501-1508, 2015.
[19] S. S. Shy, C. C. Liu, J. Y. Lin, L. L. Chen, A. N. Lipatnikov, S. I. Yang,” Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers”, Proceedings of the Combustion Institute, Vol. 35, pp. 1509-1516, 2015.
[20] P. Venkateswaran, A. Marshall, J. Seitzman, T. Lieuwen,” Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts”, Combustion and Flame, Vol. 162, pp. 375-387, 2015.
[21] M. Ball, M. Wietschel,” The future of hydrogen – opportunities and challenges”, International Journal of Hydrogen Energy, Vol. 34, pp. 615-627, 2009.
[22] D. Bradley, P. H. Gaskell, X. J. Gu, A. Sedaghat,” Premixed flamelet modelling: Factors influencing the turbulent heat release rate source term and the turbulent burning velocity”, Combustion and Flame, Vol. 143, pp. 227-245, 2005.
[23] H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, F. A. Williams,” Burning velocity of turbulent premixed flames in a high-pressure environment”, Symposium (International) on Combustion, Vol. 26, pp. 389-396, 1996.
[24] H. Kobayashi, Y. Kawabata, K. Maruta,” Experimental study on general correlation of turbulent burning velocity at high pressure”, Symposium (International) on Combustion, Vol. 27, pp. 941-948, 1998.
[25] A. Pocheau,” Scale invariance in turbulent front propagation,” Physical Review E, Vol. 49, pp. 1109-1122, 1994.
[26] B. Denet,” Frankel equation for turbulent flames in the presence of a hydrodynamic instability”, Physical review E, Vol. 55, pp. 6911-6916, 1997.
[27] M. Lawes, M. P. Ormsby, C. G. W. Sheppard, R. Woolley,” The turbulent burning velocity of iso-octane/air mixtures”, Combustion and Flame, Vol. 159, pp. 1949-1959, 2012.
[28] D. Bradley, M. Lawes, M. S. Mansour,” Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa”, Combustion and Flame, Vol. 158, pp. 123-138, 2011.
[29] T. Kitagawa, T. Nakahara, K. Maruyama, K. Kado, A. Hayakawa, S. Kobayashi,” Turbulent burning velocity of hydrogen–air premixed propagating flames at elevated pressures”, International Journal of Hydrogen Energy, Vol. 33, pp. 5842-5849, 2008.
[30] Ö. L. Gülder, G. J. Smallwood, R. Wong, D. R. Snelling, R. Smith, B. M. Deschamps, J.-C. Sautet,” Flame front surface characteristics in turbulent premixed propane/air combustion”, Combustion and Flame, Vol. 120, pp. 407-416, 2000.
[31] F. T. C. Yuen, Ö. L. Gülder,” Premixed turbulent flame front structure
investigation by Rayleigh scattering in the thin reaction zone regime”, Proceedings of the Combustion Institute, Vol. 32, pp. 1747-1754, 2009.
[32] F. T. C. Yuen, Ö. L. Gülder,” Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis”, Proceedings of the Combustion Institute, Vol. 34, pp. 1393-1400, 2013.
[33] J. Wang, M. Zhang, Y. Xie, Z. Huang, T. Kudo, H. Kobayashi,” Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa,” Experimental Thermal and Fluid Science, Vol. 50, pp. 90-96, 2013.
[34] H. Kobayashi, K. Seyama, H. Hagiwara, Y. Ogami,” Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature”, Proceedings of the Combustion Institute, Vol. 30, pp. 827-834, 2005.
[35] Y. C. Lin, P. Jansohn , K. Boulouchos,” Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions”, International Journal of Hydrogen Energy, Vol. 39, pp. 20242-20254, 2014.
[36] D. Bradley, M. Lawes, K. Liu, M. S. Mansour,” Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures,” Proceedings of the Combustion Institute, Vol. 34, pp. 1519-1526, 2013.
[37] 黃信閔,”預混紊流球狀火焰速率與自我相似傳播之量測分析”,國立中央大學機械工程研究所,碩士論文,2013年。
[38] 陳立龍,”高壓預混紊流球狀擴張火焰之自我加速性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le > 1)”,國立中央大學機械工程研究所,碩士論文,2014年。
[39] F. Wu, G. Jomaas, C. K. Law,” An experimental investigation on self-acceleration of cellular spherical flames,” Proceedings of the Combustion Institute, Vol. 34, pp. 937-945, 2013.
[40] W. K. Kim, T. Mogi, K. Kuwana, R. Dobashi,” Self-similar propagation of expanding spherical flames in large scale gas explosions,” Proceedings of the Combustion Institute, Vol. 35, pp. 2051-2058, 2015.
[41] D. Bradley, T. M. Cresswell, J. S. Puttock,” Flame acceleration due to flame-induced instabilities in large-scale explosions,” Combustion and Flame, Vol. 124, pp. 551-559, 2001.
[42] T. Kitagawa, T. Ogawa, Y. Nagano,” The effects of pressure on unstretched laminar burning velocity, Markstein length and cellularity of spherically propagating laminar flames,” COMODIA, August 2-5, Japan, 2004.
[43] H. Kido, M. Nakahara,” A model of turbulent burning velocity taking the preferential diffusion effect into consideration,” JSME International Journal. Ser. B, Fluids and Thermal Engineering, Vol. 41(3), pp. 666-673, 1998.
[44] C. K. Law,” Dynamics of stretched flames,” Proceedings of the Combustion Institute, Vol. 22, pp. 1381-1402, 1988.
[45] G. H. Markstein, Nonsteady Flame Propagation, Pergamon, 1964.
[46] 林文基,”甲烷與丙烷預混紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,1999年。
[47] 彭明偉,”中央引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[48] 董益銍,”淨煤氣化合成氣貧油可燃極限與燃燒速度量測:壓力和紊流效應”,國立中央大學機械工程研究所,碩士論文,2012年。
[49] C. Tang, Z. Huang, C. Jin, J. He, J. Wang, X. Wang, H. Miao,” Laminar burning velocities and combustion characteristics of propane–hydrogen–air premixed flames,” International Journal of Hydrogen Energy, Vol. 33, pp. 4906-4914, 2008.
[50] S. K. Marley, W. L. Roberts,” Measurements of laminar burning velocity and Markstein number using high-speed chemiluminescence imaging,” Combustion and Flame, Vol. 141, pp. 473-477, 2005.
[51] Z. Huang, Y. Zhang, K. Zenga, B. Liu, Q. Wang, D. Jiang,” Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures, Combustion and Flame, Vol. 146, pp. 302-311, 2006.
[52] R. Borghi,” On the Structure and Morphology of Turbulent Premixed Flames,” C. Casci Ed., pp. 117-138, New York, Plenum, 1985.
[53] N. Peters,” Laminar Flamelet Concepts in Turbulent Combustion,” Proceedings of the Combustion Institute, Vol. 21, pp. 1231-1250, 1986.
[54] K. N. C. Bray,” Turbulent Flows with Premixed Reactants,” Turbulent Reacting Flows, P. A. Libby & F. A. Williams Eds., pp. 115-183, New York, Springer-Verlag, 1980.
[55] G. Darrieus,” Propagation d′un front de flamme,” La Technique Moderne, Paris, 1938.
[56] L. D. Landau,” On the theory of slow combustion,” Acta Physicochim URSS, Vol. 19, pp. 77-85, 1944.
[57] A. Lipatnikov, Fundamentals of permixed turbulent combustion, CRC Press, 2012.
[58] A. A. Burluka, A. M. T. El-Dein Hussin, C. G. W. Sheppard, K. Liu, V. Sanderson,” Turbulent combustion of hydrogen–CO mixtures,” Flow Turbulence Combustion, Vol. 86, pp. 735-749, 2011.
[59] C. K. Law, Combustion physics, Cambridge university press, New York, 2006.
[60] S. S. Shy, W. K. I, M. L. Lin,” A new cruciform burner and its turbulence measurements for premixed turbulent combustion study,” Experimental Thermal and Fluid Science, Vol. 20, pp105-114, 2000.
[61] C. C. Liu, S. S. Shy, C. W. Chiu, M. W. Peng, H. J. Chung,” Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment,” International Journal of Hydrogen Energy, Vol. 36, pp. 8595-8603, 2011.
[62] W. K. Metcalfe, S. M. Burke, S. S. Ahmed, H. J. Curran,” A Hierarchical and Comparative Kinetic Modeling Study of C1−C2 Hydrocarbon and Oxygenated Fuels,” International Journal of Chemical Kinetics, Vol. 45, pp. 638-675, 2013. |