參考文獻 |
1 E. Vandeweyer, and D. Hertens, “Quantification of glands and fat in breast tissue: An experimental determination,” Ann. Anat., 184, 181–184, 2002.
2 B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys., 60, 227-292, 1997.
3 G. Maskarinec, I. Pagano, G. Lurie, L. R. Wilkens, L. N. Kolonel, “Mammographic density and breast cancer risk: the Multiethnic Cohort Study,” Am. J. Epidemiol., 162, 743-752, 2005.
4 V. A. McCormack, I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a Meta-analysis,” Cancer Epidemiol Biomarkers Prev., 15. 1159–1169, 2006.
5 M. Yaffe, “Review: Measurement of Mammographic Density,” Breast Cancer Res., 10, 209–219, 2008.
6 M. Varjonen, “Three-Dimensional digital breast tomosynthesis in the early diagnosis and detection of breast cancer,” in Digital Mammography, (Springer Berlin Heidelberg, 2006), pp. 152-159.
7 L. L. Humphrey, M. Helfand, B. K. Chan, and S. H. Woolf, “Breast cancer screening: a summary of the evidence for the U.S. Preventive Services Task Force,” Ann. Intern. Med., 137, 347-367, 2002.
8 S. G. Komen for the Cure, Types of Breast Cancer Tumors (Susan G. Komen for the Cure, 2008), pp. 806-369.
9 A.Rim and M. Chellman-Jeffers, “Trends in breast cancer screening and diagnosis,” Cleve. Clin. J. Med., 75, 2-9, 2008.
10 National Breast and Ovarian Cancer Centre, Breast cancer risk factors: a review of the evidence (National Breast and Ovarian Cancer Centre, 2009).
11 L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate,” Reports, 16, 769-771, 1991.
12 L. Wang, X. Liang, P. Galland, P. P. Ho, and R. R. Alfano, “True scattering coefficients of turbid matter measured by early-time gating,” Opt. Lett., 20, 913-915, 1995.
13 J. V. Garcia, F. Zhang and P. C. Ford, “Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide,” Phil. Trans. R. Soc. A, 371, 20120129, 2013.
14 S. B Fox, D. G. Generali and A. L. Harris, “Review: Breast tumour angiogenesis,” Breast Cancer Res., 9, 216, 2007.
15 A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” PNAS, 104, 4014-4019, 2007.
16 S. R. Arridge, and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol., 42, 841-853, 1997.
17 L. Y. Chen, M. C. Pan, M. C. Pan, “Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization,” Appl. Opt., 52, 1173-1182, 2013.
18 M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt., 37, 7419-7428, 1998.
19 H. Jiang, “Three-dimensional optical image reconstruction: finite element approach,” in Advances in Optical Imaging and Photon Migration, J. Fujimoto and M. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper ATuC3.
20 F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt., 39, 5898-5910, 2000.
21 B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt., 40, 588-600, 2001.
22 H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging., 20, 1334–1340, 2001.
23 J. Culver, R. Choe, M. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, D. Pattanayak, B. Chance, and A. Yodh, “3D diffuse optical tomography in the plane parallel transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys., 30, 235–247, 2003.
24 H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” App. Opt., 42, 135–145, 2003.
25 N. Iftimia, X. Gu, Y. Xu, H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instr., 74, 2836–2842, 2003.
26 A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt., 42, 5181–5190, 2003.
27 S. K. Biswas, K. Rajan and R. M. Vasu, “Practical Fully 3-D Reconstruction mography,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis., 29, 1017-1026, 2012.
28 K. D. Paulsen, and H. Jiang, “ Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys., 22(6), 691-701, 1995.
29 S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “ A finite element approach for modeling photon transport in tissue, ” Med. Phys., 20(2) 299-309, 1993.
30 T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo, ” Med. Phys., 19(4), 879-888, 1992.
31 W. Egan, Optical properties of inhomogeneous materials: Applications to geology, astronomy chemistry, and engineering. (Elsevier, 2012).
32 K. D. Paulsen, and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys., 22(6), 691-701, 1995.
33 S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys., 20(2), 299-309, 1993.
34 J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt., 40, 3278-3287, 2001.
35 Y. Xu, X. Gu, L. Fajardo, and H. Jiang, “In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations,” Appl. Opt., 42, 3163-3169, 2003.
36 S. Jiang, B. W. Pogue, S. Davis, and K. D. Paulsen, “Multispectral NIR Diffuse Optical Tomography System Development,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper SH35.
37 B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology, 218, 261-266, 2001.
38 L. Chen, M. Pan, and M. Pan, “Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography,” Appl. Opt. 51, 43-54, 2012.
39 M. Pan, C. Chen, L. Chen, M. Pan, Y. Shyr, “Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images.” J. Biomed. Opt., 13(2), 024022-024022-14, 2008. |