博碩士論文 102324058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.135.207.204
姓名 盧燕興(Yen-hsing Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以嵌段共聚物製備金屬與氮摻雜碳材及其氧還原活性之探討
(Metal-incorporated and nitrogen-doping carbons for oxygen reduction activity fabricated by pyrolysis of block copolymers)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以嵌段共聚物奈米結構製備銀與氮摻雜碳材,利用顯微影像 (AFM、FESEM、TEM) 、X光散射分析 (GI-SAXS)、X-ray 光電子能譜儀 (XPS)、交流阻抗分析 (EIS)、循環伏安 (CV) 和旋轉圓盤電極 (RDE)等儀器對材料的形貌、結構、成分、電化學性質進行測量,結果顯示由嵌段共聚物製備銀與氮摻雜碳材(CTNC-Ag-400),其在飽和氧氣的0.1 M KOH溶液中對氧還原反應(ORR)的電催化性能最佳,在1600 rpm下起峰電位為 -0.1 V(v.s SCE)和電流密度3.9 mA/cm2,電子轉移數為3.8,歸因於奈米銀粒子有還原過氧化物的能力。以兩種四氯金酸水溶液電置換銀與氮摻雜碳材,利用顯微影像 (AFM、FESEM、TEM、HR-TEM) 、X光散射分析 (GI-SAXS)、X-ray 光電子能譜儀 (XPS)、X射線能譜元素分析(EDS) 、循環伏安 (CV) 和旋轉圓盤電極(RDE)等儀器對材料的形貌、結構、成分、電化學性質進行測量,其中以K-gold solution電置換半小時製備金@銀與氮摻雜碳材的氧還原活性最佳,在1600 rpm轉速下起峰電位為-0.1 V (v.s SCE)和電流密度為4.8 mA/cm2,電子轉移數為3.9,歸因於金粒子尺寸小活性大有利於四電子還原。
摘要(英) Silver-incorporated and nitrogen-enriched nanocarbons with well-defined morphology are synthesized by pyrolysis of self-assembled block copolymer. The morphologies, structures, compostions, and electrocatalytic activities of the as-prepared materials were investigated using atomic force microscope (AFM)、field-emission scanning electron microscope(FESEM)、transmission electron microscopy(TEM) 、grazing-incidence small-angle x-ray scattering (GI-SAXS)、x-ray photoelectron spectroscopy (XPS)、electrochemical impedance spectroscopy (EIS)、cyclic voltammetry (CV) and ratating disk electrode (RDE). The results show that silver-incorporated and nitrogen-enriched nanocarbons with a well-defined morphology were synthesized by pyrolysis of self-assembled block copolymer display good electrocatalytic activity in oxygen reduction reactions (ORR) in O2-saturated alkain solution. At 1600 rpm, it exhibits an ORR onset potential of about -0.1 V (v.s SCE) and the corresponding ORR current density (J) reaches 3.8 mA/cm2. The transferred electron number (n) was 3.8. The reason is that peroxide reduction on silver nanoparticles (Ag NPS) is conducted and Ag NPS enhance the activity of nitrogen-enriched nanocarbons. Here, two types of HAuCl4 solutions are as a second metal precursor involving 0.1 mM HAuCl4 aqueous solution and K-Gold solution. The silver-incorporated and nitrogen-enriched nanocarbons are subject to galvanic replacement reactions (GRRs) in 0.1 mM HAuCl4 aqueous solution and K-gold solution. The GRR of Ag NPs in the K-gold solution yield nonporous Ag/Au nanoparticles (core is sliver and shell is silver/gold alloy). The nonporousnanoparticles (core is sliver;shell is silver/gold alloy) incorporated into nitrogen-enriched nanocarbons display an impressive electrocatalytic ORR performance. At 1600 rpm, it exhibits an ORR onset potential of about -0.1 V (v.s SCE) and the corresponding ORR current density (J) reaches around 4.8 mA/cm2. The transferred electron number (n) is 3.9. The reason is that the small size effects of gold nanoparticles (Au NPS) benefit activating oxygen molecules.
關鍵字(中) ★ 氮碳參雜碳材
★ 金屬參雜碳材
★ 氧還原活性
關鍵字(英) ★ nitrogen-doping carbons
★ metal-doping carbons
★ oxygen reduction activity
論文目次 摘要....................................................i
Abstract...............................................ii
致謝...................................................iv
目錄....................................................v
圖目錄................................................vii
表目錄................................................xiv
第一章 序論............................................1
1-1 燃料電池陰極的氧還原反應及觸媒.....................1
1-2 氮摻雜碳材之氧還原活性............................4
1-2-1 雙團鏈共聚物製備氮摻雜碳材.........................4
1-2-2 氮組態對氧還原的影響..............................7
1-3 金屬摻雜碳材料的氧還原活性.........................8
1-4 實驗動機........................................10
第二章 實驗方法........................................11
2-1 實驗藥品........................................11
2-2 樣品製備........................................11
2-2-1 基材清潔........................................11
2-2-2 氮摻雜碳料及銀與氮摻雜碳材........................11
2-2-3 金與氮摻雜碳材、金銀雙金屬與氮摻雜碳材.............12
2-3 使用儀器........................................12
2-3-1 顯微影像觀察....................................13
2-3-2 X光散射分析.....................................13
2-3-3 熱重分析儀......................................14
2-3-4 紫外光可見光光分光譜儀...........................14
2-3-5 拉曼光譜儀......................................14
2-3-6 X-ray 光電子能譜儀..............................14
2-3-7 交流阻抗分析....................................15
2-3-8 氧還原活性......................................15
第三章 結果與討論......................................17
3-1 銀與氮摻雜碳材與氮摻雜碳材的性質與氧還原活性........17
3-1-1 銀與氮摻雜碳材與氮摻雜碳材的形貌、結構、成分........17
3-1-2 銀與氮摻雜碳材與氮摻雜碳材氧還原活性 ...............32
3-2 金與氮摻雜碳材的性質與氧還原活性..................37
3-3 金銀與氮摻雜碳材的性質與氧還原活性.................41
3-3-1 金銀與氮摻雜碳材的性質...........................41
3-3-2 金銀與氮摻雜碳材的氧還原活性......................51
結論...................................................56
參考資料................................................57
附錄...................................................61
參考文獻 (1)Liu, M.; Zhang, R.; Chen, W. Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chemical Reviews 2014, 114, 5117-5160.
(2)Yeager, E. Electrocatalysts for O2 reduction. Electrochimica Acta 1984, 29, 1527-1537.
(3)Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323, 760-764.
(4)Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.; Ma, J.; Ma, Y.; Hu, Z. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie 2011, 123, 7270-7273.
(5)Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4, 1321-1326.
(6)Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. a.; Huang, S. Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano 2012, 6, 205-211.
(7)Wang , S.; Iyyamperumal , E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen. Angewandte Chemie International Edition 2011, 50, 11756-11760.
(8)Cui, H.; Chen, Z.; Zhong, S.; Wooley, K. L.; Pochan, D. J. Block Copolymer Assembly via Kinetic Control. Science 2007, 317, 647-650.
(9)Segalman, R. A. Patterning with block copolymer thin films. Materials Science and Engineering: R: Reports 2005, 48, 191-226.
(10)Hu, H.; Gopinadhan, M.; Osuji, C. O. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 2014, 10, 3867-3889.
(11)Cheng, J. Y.; Ross, C. A.; Chan, V. Z. H.; Thomas, E. L.; Lammertink, R. G. H.; Vancso, G. J. Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography. Advanced Materials 2001, 13, 1174-1178.
(12)Luo, M.; Epps, T. H. Directed Block Copolymer Thin Film Self-Assembly: Emerging Trends in Nanopattern Fabrication. Macromolecules 2013, 46, 7567-7579.
(13)Ruiz, R.; Kang, H.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; de Pablo, J. J.; Nealey, P. F. Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly. Science 2008, 321, 936-939.
(14)Lynd, N. A.; Meuler, A. J.; Hillmyer, M. A. Polydispersity and block copolymer self-assembly. Progress in Polymer Science 2008, 33, 875-893.
(15)Dai, W.; Kim, S. J.; Seong, W.-K.; Kim, S. H.; Lee, K.-R.; Kim, H.-Y.; Moon, M.-W. Porous Carbon Nanoparticle Networks with Tunable Absorbability. Scientific Reports 2013, 3, 2524.
(16)Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Cheng, L.; Feng, D.; Wu, Z.; Chen, Z.; Wan, Y.; Stein, A.; Zhao, D.: A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly.
(17)Zhang, F.; Meng, Y.; Gu, D.; Yan, Y.; Yu, C.; Tu, B.; Zhao, D.: A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia3d Bicontinuous Cubic Structure.
(18)Wang, X.; Lee, J. S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S. Ammonia-Treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction. Chemistry of Materials 2010, 22, 2178-2180.
(19)Zhong, M.; Kim, E. K.; McGann, J. P.; Chun, S.-E.; Whitacre, J. F.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T. Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer. Journal of the American Chemical Society 2012, 134, 14846-14857.
(20)Wu, P.; Qian, Y.; Du, P.; Zhang, H.; Cai, C. Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. Journal of Materials Chemistry 2012, 22, 6402-6412.
(21)Lee, K. E.; Kim, J. E.; Maiti, U. N.; Lim, J.; Hwang, J. O.; Shim, J.; Oh, J. J.; Yun, T.; Kim, S. O. Liquid Crystal Size Selection of Large-Size Graphene Oxide for Size-Dependent N-Doping and Oxygen Reduction Catalysis. ACS Nano 2014, 8, 9073-9080.
(22)Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science 2012, 5, 7936-7942.
(23)Zhou, R.; Qiao, S. Z. Silver/Nitrogen-Doped Graphene Interaction and Its Effect on Electrocatalytic Oxygen Reduction. Chemistry of Materials 2014, 26, 5868-5873.
(24)Tang, W.; Lin, H.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E. W. Size-Dependent Activity of Gold Nanoparticles for Oxygen Electroreduction in Alkaline Electrolyte. The Journal of Physical Chemistry C 2008, 112, 10515-10519.
(25)Kim, S.-S.; Kim, Y.-R.; Chung, T. D.; Sohn, B.-H. Tunable Decoration of Reduced Graphene Oxide with Au Nanoparticles for the Oxygen Reduction Reaction. Advanced Functional Materials 2014, 24, 2764-2771.
(26)Yin, H.; Tang, H.; Wang, D.; Gao, Y.; Tang, Z. Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction. ACS Nano 2012, 6, 8288-8297.
(27)Lee, K.; Zhang, L.; Lui, H.; Hui, R.; Shi, Z.; Zhang, J. Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochimica Acta 2009, 54, 4704-4711.
(28)Tian, J.; Morozan, A.; Sougrati, M. T.; Lefèvre, M.; Chenitz, R.; Dodelet, J.-P.; Jones, D.; Jaouen, F. Optimized Synthesis of Fe/N/C Cathode Catalysts for PEM Fuel Cells: A Matter of Iron–Ligand Coordination Strength. Angewandte Chemie 2013, 125, 7005-7008.
(29)Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts. Angewandte Chemie 2014, 126, 3749-3753.
(30)Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324, 71-74.
(31)Yan, M. D.; Harnish, B. A simple method for the attachment of polymer films on solid substrates. Advanced Materials 2003, 15, 244-244.
(32)Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics 2007, 9, 1276-1290.
(33)Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. The Journal of Chemical Physics 1970, 53, 1126-1130.
(34)Abdo, H.; Khalil, K.; Al-Deyab, S.; Altaleb, H.; Sherif, E.-S. Antibacterial effect of carbon nanofibers containing Ag nanoparticles. Fibers and Polymers 2013, 14, 1985-1992.
(35)Santana, A. L.; Noda, L. K.; Pires, A. T. N.; Bertolino, J. R. Poly (4-vinylpyridine)/cupric salt complexes: spectroscopic and thermal properties. Polymer Testing 2004, 23, 839-845.
(36)Watanabe, M.; Isoyama, G.; Tsuji, K.; Injuk, J.; Van Grieken, R. X-ray spectrometry: Recent technological advances. John Wiley & Sons, Chichester (UK) 2004, 29.
(37)Maldonado, S.; Morin, S.; Stevenson, K. J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 2006, 44, 1429-1437.
(38)Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry 2010, 20, 7491-7496.
(39)Arrigo, R.; Havecker, M.; Schlogl, R.; Su, D. S. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chemical Communications 2008, 4891-4893.
(40)Kim, Y.-R.; Bong, S.; Kang, Y.-J.; Yang, Y.; Mahajan, R. K.; Kim, J. S.; Kim, H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics 2010, 25, 2366-2369.
(41)Fellinger, T.-P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society 2012, 134, 4072-4075.
(42)Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. O2 Reduction on Graphite and Nitrogen-Doped Graphite:  Experiment and Theory. The Journal of Physical Chemistry B 2006, 110, 1787-1793.
(43)Kongkanand, A.; Kuwabata, S. Oxygen reduction at silver monolayer islands deposited on gold substrate. Electrochemistry Communications 2003, 5, 133-137.
(44)Goodman, A. M.; Cao, Y.; Urban, C.; Neumann, O.; Ayala-Orozco, C.; Knight, M. W.; Joshi, A.; Nordlander, P.; Halas, N. J. The Surprising in Vivo Instability of Near-IR-Absorbing Hollow Au–Ag Nanoshells. ACS Nano 2014, 8, 3222-3231.
(45)Shiigi, H.; Morita, R.; Muranaka, Y.; Tokonami, S.; Yamamoto, Y.; Nakao, H.; Nagaoka, T. Mass Production of Monodisperse Gold Nanoparticles in Polyaniline Matrix. Journal of the Electrochemical Society 2012, 159, D442-D446.
(46)劉峻佑,tailoring nanostructure of diblock copolymers by photochemistry and its applications in spatial control of Ag and Ag@Au nanoparticle,國立中央大學,博士論文,民國104年1月
指導教授 孫亞賢(Ya-sen Sun) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明