博碩士論文 102324060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.118.19.89
姓名 周品均(Pin-chun Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以乙二醇為基底之深共熔溶劑應用於鈉離子電池電解液之研究
(Deep eutectic solvents based on ethylene glycol as electrolytes for sodium-ion batteries)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要是研究以乙二醇為基底之新型深共熔(Deep eutectic solvent, DES)電解液之電化學特性,並將其應用於鈉離子電池中。本研究首次提出以便宜且低黏度的乙二醇(Ethylene glycol, EG)作為氫鍵予體,搭配鈉鹽及 [C2mim][BF4]、醋酸膽鹼(ChOAc),製備出高導電度、製程簡單且價格低廉之新型深共熔電解液。此新型深共熔電解液之電位視窗最大可達4.2 V;在26 ℃之下的離子導電度範圍落在2.3 mS/cm至11.3 mS/cm區間;在25 ℃之下的黏度範圍則落在16 cp至77 cp區間。
與傳統鈉離子電池所使用之有機電解液1 M NaClO4溶於EC-DEC(1:1 v/v) 相比,新型深共熔電解液具有較佳的熱穩定性(~100 ℃熱分解)及更寬廣的應用溫度範圍。且由燃燒測試可知ChOAc及[C2mim][BF4] 均為效果良好之阻燃劑。此外,進一步將此三元電解液系統之應用於鈉離子電池中,以Na0.44MnO2為正極材料、以NaTi2(PO4)3為負極材料,測試不同電解液之電池性能表現及循環穩定性,由實驗結果可知在100 mA/g的電流密度下經過100圈充放電循環後,新型深共熔電解液系統之電容維持率最高可達100 %,幾乎沒有任何電容量衰退; 與之相比,傳統有機電解液系統1 M NaClO4溶於EC-DEC(1:1 v/v) 之電容維持率為94 %,低於其它DES電解液系統。
基於以上實驗結果,可知新型深共熔溶劑可做為一新穎之鈉離子電池電解液,且比起傳統有機電解液系統(1 M NaClO4溶於EC-DEC(1:1 v/v)) 可提高其安全性能,是一項具有發展潛力之電解液選項。
摘要(英) In this research, we study the electrochemical properties of new Deep eutectic solvent (DES) from the view of their possible application as non-aqueous electrolytes in sodium-ion batteries. The new DES electrolytes are formulated by mixing ethylene glycol, sodium salts and additives (Choline acetate, ChOAc and 1-Ethyl-3-methylimidazolium tetrafluoroborate, [C2mim][BF4]) at room temperature. The potential window of different electrolytes is studied by linear sweep voltammetry (LSV) and cyclic voltammetry (CV) measurements. The new DES electrolytes containing ChOAc and [C2mim][BF4] are found to be electrochemically stable up to 4.1 V and 4.2 V (potential window). The ionic conductivity and viscosity of the new DES electrolytes are found exhibit ranging from 2.3 mS/cm to 11.3 mS/cm at 26 ℃and 16 cp to 77 cp at 25 ℃, respectively.
Compared to conventional organic electrolyte (1 M NaClO4 in EC-DEC (1:1 v/v)), the new DES electrolytes show better thermal stability (~100 ℃) and non-flammability. In addition, different electrolytes used in Na-ion battery system (with Na0.44MnO2 and NaTi2(PO4)3 as a positive and negative electrode, respectively) are tested at room temperature. It was found that the new DES electrolytes show better capacity retention than traditional organic electrolyte (1 M NaClO4 in EC-DEC (1:1 v/v)) after 100 charge-discharge cycles.
Based on its excellent electrochemical properties and cycling performances, the ethylene glycol based new DES can be considered as promising electrolytes for high-safety applications in sodium-ion battery.
關鍵字(中) ★ 電解液
★ 深共熔溶劑
★ 鈉離子電池
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
第二章 文獻回顧 6
2-1 鈉離子電池概述 6
2-1-1 鈉離子電池之發展 6
2-1-2 鈉離子電池之工作原理 10
2-2 鈉離子電池之正極材料 12
2-3 鈉離子電池之負極材料 18
2-4 鈉離子電池之電解液 20
2-4-1 水溶液系統 21
2-4-2有機電解液 24
2-4-3離子液體 30
2-4-4 共熔混合物 34
第三章 實驗方法與步驟 41
3-1 實驗流程 41
3-2 實驗藥品及設備 42
3-2-1 實驗藥品 42
3-2-2 實驗設備 45
3-3 正極的製備 47
3-4 負極的製備 47
3-5 電解液的製備 49
3-5-1 醋酸膽鹼(Choline Acetate, ChOAc)的合成 49
3-5-2 電解液的製備 51
3-6 電解液特性分析 54
3-6-1 電位窗(Potential window)量測 54
3-6-2 離子導電度(Ionic conductivity)量測 58
3-6-3 黏度(Viscosity)量測 60
3-6-4熱重分析(Thermogravimetric analyzer, TGA) 61
3-6-5差式掃描熱量分析(Differential Scanning Calorimetry, DSC) 61
3-6-6 凝固觀測溫度(Observed temperature of solidification) 63
3-6-7 燃燒測試(Flammability test) 64
3-7 電池組裝與充放電測試 65
3-7-1 電池組裝 65
3-7-2 循環充放電測試 66
第四章 實驗結果與討論 67
4-1電解液特性分析 67
4-1-1電位視窗(Potential window) 67
4-1-2離子導電度(Ionic conductivity) 77
4-1-3黏度(Viscosity) 82
4-1-4熱重分析( TGA) 85
4-1-5差式掃描熱量分析(DSC) 88
4-1-6凝固觀測溫度(Observed temperature of solidification) 91
4-1-7燃燒測試(Flammability) 93
4-2電解液應用於鈉離子電池之循環充放電測試 98
4-2-1充放電特性測試 98
4-2-2循環壽命測試 105
第五章 結論與未來工作 112
5-1 結論 112
5-2 未來工作 115
參考文獻 116
附錄 129
參考文獻 1. Kundu, D., Talaie, E., Duffort, V., and Nazar, L., The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angewandte Chemie International Edition, 2015. 54(11): p. 3431-3448.
2. Palomares, V., Serras, P., Villaluenga, I., Hueso, K., Carretero-González, J., and Rojo, T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012. 5(3): p. 5884-5901.
3. 劉峰其, 非線性鋰電池之充放電模型(碩士論文); Nonlinear lithium battery models for battery charging and discharging. 2010.
4. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science, 2011. 334(6058): p. 928-935.
5. Han-Xi, Y. and Q. Jiang-Feng, Recent development of aqueous sodium ion batteries and their key materials. Journal of Inorganic Materials, 2013. 28(11): p. 1165-1171.
6. Liu, F.-C., 非線性鋰電池之充放電模型(碩士論文). 2010.
7. 楊建華 and 曹佳弟, 鈉硫電池電極結構改進與電池性能研究 ①. 電化學, 1996. 2(2).
8. 潘慈暉 and 盧司坤, 鎳氫及鋰離子二次電池市場分析. 1998.
9. 吳玉祥, 吳俊霖, and 張晏銘, 鋰離子二次電池負極材料表面改質之發展與改良. Journal of China Institute of Technology, 2004. 31.
10. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica Acta, 2006. 51(26): p. 5567-5580.
11. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., and Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003(1): p. 70-71.
12. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., and Duarte, A.R.C., Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2014. 2(5): p. 1063-1071.
13. Zaidi, W., L. Timperman, and M. Anouti, Deep eutectic solvent based on sodium cations as an electrolyte for supercapacitor application. RSC Advances, 2014. 4(86): p. 45647-45652.
14. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Research development on sodium-ion batteries. Chemical Reviews, 2014. 114(23): p. 11636-11682.
15. Pan, H., Y.-S. Hu, and L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013. 6(8): p. 2338-2360.
16. Ellis, B.L. and L.F. Nazar, Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science, 2012. 16(4): p. 168-177.
17. Hui, L., Chuan, W., Feng, W., and Ying, B., Sodium ion battery: a promising energy-storage candidate for supporting renewable electricity. Acta Chimica Sinica, 2014. 72(1): p. 21-29.
18. 潘慧霖, 胡勇勝, 李泓, and 陳立泉, 室溫鈉離子儲能電池電極材料結構研究進展. 中國科學: 化學, 2014. 8: p. 1269-1279.
19. Komaba, S., Kubota, K., Dahbi, M., and Tokiwa, K., Rechargeable Na-ion batteries for large format applications. in Renewable and Sustainable Energy Conference (IRSEC), 2014 International. 2014. IEEE.
20. Wang, L.P., Yu, L., Wang, X., Srinivasan, M., and Xu, Z.J., Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015.
21. Kim, S.W., Seo, D., Ma, X., Ceder, G., and Kang, K., Electrode materials for rechargeable sodium‐ion batteries: potential alternatives to current lithium‐ion batteries. Advanced Energy Materials, 2012. 2(7): p. 710-721.
22. 潘慧霖, 胡勇勝, 李泓, and 陳立泉, 室溫鈉離子儲能電池電極材料結構研究進展. 中國科學 化學 (中文版), 2014. 44(8): p. 1269-1279.
23. 吳采羚, 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究(碩士論文); Synthesis and characterization of SnS2 anode material for Li ion battery. 2014.
24. 錢江鋒, 高學平, and 楊漢西, 電化學儲鈉材料的研究進展. 電化學, 2013. 19(006): p. 523-529.
25. Park, S.I., Gocheva, I., Okada, S., and Yamaki, J., Electrochemical properties of NaTi2 (PO4)3 anode for rechargeable aqueous sodium-ion batteries. Journal of The Electrochemical Society, 2011. 158(10): p. A1067-A1070.
26. Slater, M.D., Kim, D., Lee, E., and Johnson, C.S., Sodium‐ion batteries. Advanced Functionalmaterials, 2013. 23(8): p. 947-958.
27. Ponrouch, A., Monti, D., Boschin, A., Steen, B., Johansson, P., and Palacín, M., Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry A, 2015. 3(1): p. 22-42.
28. Endres, F. and S.Z. El Abedin, Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 2006. 8(18): p. 2101-2116.
29. Qu, Q., Shi, Y., Tian, S., Chen, Y., Wu, Y., and Holze, R., A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2. Journal of Power Sources, 2009. 194(2): p. 1222-1225.
30. Whitacre, J., A. Tevar, and S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochemistry Communications, 2010. 12(3): p. 463-466.
31. Li, Z., Young, D., Xiang, K., Carter, W.C., and Chiang, Y., Towards high power high energy aqueous sodium‐ion batteries: The NaTi2(PO4)3/Na0. 44MnO2 System. Advanced Energy Materials, 2013. 3(3): p. 290-294.
32. Wu, X., Cao, Y., Ai, X., Qian, J., and Yang, H., A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochemistry Communications, 2013. 31: p. 145-148.
33. Luo, J.-Y., Cui, W., He, P., and Xia, Y., Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature Chemistry, 2010. 2(9): p. 760-765.
34. Ponrouch, A., Dedryvère, R., Monti, D., Demet, A.E., Mba, J.M.A., Croguennec, L., Masquelier, C., Johansson, P., and Palacín, M.R., Towards high energy density sodium ion batteries through electrolyte optimization. Energy & Environmental Science, 2013. 6(8): p. 2361-2369.
35. Bhide, A., Hofmann, J., Dürr, A.K., Janek, J., and Adelhelm, P., Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2. Physical Chemistry Chemical Physics, 2014. 16(5): p. 1987-1998.
36. Gocheva, I.D., Nishijima, M., Doi, T., Okada, S., Yamaki, J., and Nishida, T., Mechanochemical synthesis of NaMF3 (M= Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries. Journal of Power Sources, 2009. 187(1): p. 247-252.
37. Recham, N., Chotard, J., Dupont, L., Djellab, K., Armand, M., and Tarascon, J., Ionothermal synthesis of sodium-based fluorophosphate cathode materials. Journal of the Electrochemical Society, 2009. 156(12): p. A993-A999.
38. Berthelot, R., D. Carlier, and C. Delmas, Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nature Materials, 2011. 10(1): p. 74-80.
39. Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., and Komaba, S., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials, 2012. 11(6): p. 512-517.
40. Xia, X. and J. Dahn, NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochemical and Solid-State Letters, 2011. 15(1): p. A1-A4.
41. Thomas, P., J. Ghanbaja, and D. Billaud, Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Electrochimica Acta, 1999. 45(3): p. 423-430.
42. Thomas, P. and D. Billaud, Electrochemical insertion of sodium into hard carbons. Electrochimica Acta, 2002. 47(20): p. 3303-3307.
43. Moreau, P., Guyomard, D., Gaubicher, J., and Boucher, F., Structure and stability of sodium intercalated phases in olivine FePO4. Chemistry of Materials, 2010. 22(14): p. 4126-4128.
44. Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J., and Prakash, A., Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials, 2012. 24(10): p. 1846-1853.
45. Alcántara, R., J.J. Mateos, and J. Tirado, Negative electrodes for lithium-and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000 C. Journal of The Electrochemical Society, 2002. 149(2): p. A201-A205.
46. Cao, Y., Xiao, L., Wang, W., Choi, D., Nie, Z., Yu, J., Saraf, L.V., Yang, Z., and Liu, J., Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Advanced Materials, 2011. 23(28): p. 3155-3160.
47. Barker, J., M. Saidi, and J. Swoyer, A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochemical and Solid-state Letters, 2003. 6(1): p. A1-A4.
48. Alcántara, R., Jiménez-Mateos, J.M., Lavela, P., and Tirado, J.L., Carbon black: a promising electrode material for sodium-ion batteries. Electrochemistry Communications, 2001. 3(11): p. 639-642.
49. Alcántara, R., Lavela, P., Ortiz, G.F.,Tirado, J.L., Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochemical and Solid-State Letters, 2005. 8(4): p. A222-A225.
50. Zhuo, H., Wang, X., Tang, A., Liu, Z., Gamboa, S., and Sebastian, P., The preparation of NaV1− xCrxPO4F cathode materials for sodium-ion battery. Journal of Power Sources, 2006. 160(1): p. 698-703.
51. Liu, H., Zhou, H., Chen, L., Tang, Z., and Yang, W., Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. Journal of Power Sources, 2011. 196(2): p. 814-819.
52. Stevens, D. and J. Dahn, High capacity anode materials for rechargeable sodium‐ion batteries. Journal of the Electrochemical Society, 2000. 147(4): p. 1271-1273.
53. Vidal-Abarca, C., Lavela, P., Tirado, J., Chadwick, A., Alfredsson, M., and Kelder, E., Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent. Journal of Power Sources, 2012. 197: p. 314-318.
54. Shacklette, L., T. Jow, and L.d. Townsend, rechargeable electrodes from sodium cobalt bronzes. Journal of The Electrochemical Society, 1988. 135(11): p. 2669-2674.
55. Wenzel, S., Hara, T., Janek, J., and Adelhelm, P., Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci., 2011. 4(9): p. 3342-3345.
56. Stevens, D. and J. Dahn, An In situ small‐aAngle X‐ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. Journal of The Electrochemical Society, 2000. 147(12): p. 4428-4431.
57. Ellis, L.D., T.D. Hatchard, and M.N. Obrovac, reversible insertion of sodium in tin. Journal of the Electrochemical Society, 2012. 159(11): p. A1801-A1805.
58. Ryu, H., Kim, T., Kim, K., Ahn, J., Nam, T., Wang, G., and Ahn, H., Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. Journal of Power Sources, 2011. 196(11): p. 5186-5190.
59. Hartmann, P., Bender, C.L., Sann, J. Dürr, A.K., Jansen, M., Janek, J., and Adelhelm, P., A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Physical Chemistry Chemical Physics, 2013. 15(28): p. 11661-11672.
60. Hartmann, P., Bender, C.L., Sann, J. Dürr, A.K., Jansen, M., Janek, J., and Adelhelm, P., A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Materials, 2013. 12(3): p. 228-232.
61. Wenzel, S., Metelmann, H., Raiß, C., Dürr, A.K., Janek, J., and Adelhelm, P., Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. Journal of Power Sources, 2013. 243: p. 758-765.
62. Seddon, K.R., A. Stark, and M.-J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 2000. 72(12): p. 2275-2287.
63. 蔡茹雅, 離子液體在酵素催化聚合聚苯胺的應用(碩士論文). 2010.
64. 劉盈昌, 以氯化金屬和氯化膽鹼組成的離子液體為電解質之鋅銅電池的研究(碩士論文). 2008.
65. 劉伶, 離子液體在電池中的應用. 黑龍江科技資訊, 2015. 11: p. 004.
66. 代克化, 毛景, and 翟玉春, 離子液體用作鋰離子電池電解質溶液的研究綜述. 2012.
67. Anastas, P. and J. Warner, Green chemistry. Frontiers, 1998.
68. 陳志剛, 宗敏華, and 顧振新, 離子液體毒性, 生物降解性及綠色離子液體的設計與合成. 有機化學, 2009. 29(5): p. 672-680.
69. Noda, A. and M. Watanabe, Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochimica Acta, 2000. 45(8): p. 1265-1270.
70. Nishida, T., Y. Tashiro, and M. Yamamoto, Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. Journal of Fluorine Chemistry, 2003. 120(2): p. 135-141.
71. Bonhote, P., Dias, A., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M., Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry, 1996. 35(5): p. 1168-1178.
72. Hodge, I.M., Strong and fragile liquids—a brief critique. Journal of Non-crystalline Solids, 1996. 202(1): p. 164-172.
73. Dzyuba, S.V. and R.A. Bartsch, Influence of structural variations in 1‐alkyl (aralkyl)‐3‐methylimidazolium hexafluorophosphates and bis (trifluoromethylsulfonyl) imides on physical properties of the ionic liquids. ChemPhysChem, 2002. 3(2): p. 161-166.
74. MacFarlane, D., Meakin, P., Sun, J., Amini, N., amd Forsyth, M., Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. The Journal of Physical Chemistry B, 1999. 103(20): p. 4164-4170.
75. Barisci, J., Wallace, G.G., MacFarlane, D.R., and Baughman, R.H., Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochemistry Communications, 2004. 6(1): p. 22-27.
76. McFarlane, D., Sun, J., Golding, J., Meakin, P., amd Forsyth, M., High conductivity molten salts based on the imide ion. Electrochimica Acta, 2000. 45(8): p. 1271-1278.
77. Matsumoto, H., Yanagida, M., Tanimoto, K., Nomura, M., Kitagawa, Y., Miyazaki, Y., Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis (trifluoromethylsulfonyl) imide. Chemistry Letters, 2000. 29(8): p. 922.
78. Abbott, A.P., R.C. Harris, and K.S. Ryder, Application of hole theory to define ionic liquids by their transport properties. The Journal of Physical Chemistry B, 2007. 111(18): p. 4910-4913.
79. Smith, E.L., A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 2012. 114(21): p. 11060-11082.
80. Ru and B. Konig, Low melting mixtures in organic synthesis - an alternative to ionic liquids? Green Chemistry, 2012. 14(11): p. 2969-2982.
81. Boisset, A., J. Jacquemin, and M. Anouti, Physical properties of a new Deep Eutectic Solvent based on lithium bis [(trifluoromethyl) sulfonyl] imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochimica Acta, 2013. 102: p. 120-126.
82. Cojocaru, A. and M. Sima, Electrochemical investigation of the deposition/dissolution of selenium in choline chloride with urea or ethylene glycol ionic liquids. Rev Chim, 2012. 63: p. 217-223.
83. Zhang, Q., De Oliveira Vigier, K., Royer, S., and Jerome, F., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012. 41(21): p. 7108-7146.
84. Zuo, X., Li, Q., Liu, J., Xiao, X., Fan, C., and Nan, J., Preparation and performances of room molten salt as electrolyte in carbon-carbon capacitor based on LiPF6 and trifluoroacetamide. Acta Chimica Sinica, 2012. 70(04): p. 367-371.
85. Boisset, A., Menne, S., Jacquemin, J., Balducci, A., and Anouti, M., Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2013. 15(46): p. 20054-20063.
86. Zaidi, W., Timperman, L., and Anouti, M., Deep eutectic solvents based on N-methylacetamide and a lithium salt as electrolytes at elevated temperature for activated carbon-based supercapacitors. The Journal of Physical Chemistry C, 2014. 118(8): p. 4033-4042.
87. Baokou, X. and M. Anouti, Physical properties of a new deep eutectic solvent based on sulfonium ionic liquid as suitable electrolyte for electric double-layer capacitors. The Journal of Physical Chemistry C, 2014. 119: p. 970-979.
88. Kim, D.J., Ponraj, R., Kannan, A.G., Lee, H., Fathi, R., Ruffo, R., Mari, C.M., and Kim, D.K., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. Journal of Power Sources, 2013. 244: p. 758-763.
89. Zhao, H., G.A. Baker, and S. Holmes, New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Organic & Bomolecular Chemistry, 2011. 9(6): p. 1908-1916.
90. 廖敏玲, 含有兩性離子官能基之表面自我聚集單分子層之研究(碩士論文). 成功大學化學工程學系學位元論文, 2002: p. 1-76.
91. Gagne, R.R., C.A. Koval, and G.C. Lisensky, Ferrocene as an internal standard for electrochemical measurements. Inorganic Chemistry, 1980. 19(9): p. 2854-2855.
92. Balducci, A., F. Soavi, and M. Mastragostino, The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Applied Physics A, 2006. 82(4): p. 627-632.
93. Deng, P., Liu, L., Ren, S., Li, H., and Zhang, Q., N-acylation: an effective method for reducing the LUMO energy levels of conjugated polymers containing five-membered lactam units. Chemical Communications, 2012. 48(55): p. 6960-6962.
94. 林佳緯, 含鋰室溫型離子液體之輸送特性及其微量添加對於鋰離子二次電池性質之影響(碩士論文). 2010, 國立雲林科技大學化學工程與材料工程系碩士班.
95. O’Mahony, A.M., Silvester, D., Aldous, L., Hardacre, C., and Compton, R.G., Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. Journal of Chemical & Engineering Data, 2008. 53(12): p. 2884-2891.
96. Johnson, D.A., Some thermodynamic aspects of inorganic chemistry. 1982: CUP Archive.
97. Olivier-Bourbigou, H. and L. Magna, Ionic liquids: perspectives for organic and catalytic reactions. Journal of Molecular Catalysis A: Chemical, 2002. 182: p. 419-437.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明