博碩士論文 102326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.222.75.85
姓名 姜明辰(Ming-Chen Jiang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2015年春季鹿林山氣膠水溶性無機離子短時間動態變化特性
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2015年春季在鹿林山大氣背景觀測站(以下簡稱鹿林山,海拔高度2,862 m)以即時氣膠水溶性離子監測系統(Particle-Into-Liquid-Sampler coupled to an Ion Chromatograph, PILS-IC)監測PM2.5水溶性離子,並結合測站內即時監測儀器監測的PM2.5、PM10大氣質量濃度、PM1、PM10光學吸光及散光係數、氣體污染物濃度、氣膠數目濃度與粒徑分布動態變化等資料進行討論。
在不受生質燃燒、谷風、雲霧事件影響時段,PM2.5大氣質量濃度平均為3.2±0.3 μg m-3,PM2.5水溶性無機離子以陰離子為主,其中SO42-濃度最高,平均為0.7±0.1 μg m-3;陽離子濃度較低,且環境中常呈現NH4+不足以完全中和SO42-和NO3-現象。鹿林山午後易受谷風影響,谷風影響期間CO、O3、RH、PM10、PM2.5數值會上升。三次雲霧事件都發生在午後,CO、O3、PM2.5濃度分別為0.13±0.04 ppm、48.3±9.4 ppbv、16.5±4.1 μg m-3,SO42-、NH4+、NO3-平均濃度分別為3.6±0.8、2.2±1.1、1.5±0.8 μg m-3,顯示受到谷風影響的污染物濃度。計算雲霧期間與大氣SO2平衡而溶解於霧珠的SO42-和PILS-IC量測的SO42-比值(Dissolved Gas over Measured Ions, DIGMI),發現在“雲霧發生”前段DIGMI略大於1情況較多,“雲霧發生”期間和以後則DIGMI數值小於1,代表雲霧事件大多受谷風傳輸帶來SO42-,變低DIGMI數值。
鹿林山四次生質燃燒事件(含谷風及雲霧事件)中, CO、O3、PM2.5和K+平均濃度分別為0.26±0.3 ppm、74.2±7.9 ppbv、28.8±6.7 μg m-3、0.6±0.1 μg m-3,SO42-、NH4+、NO3-濃度分別為4.1±0.8、3.0±1.0、1.9±0.4 μg m-3;生質燃燒期間,大氣環境長時間出現過剩NH4+ (ExNH4+),代表足以中和SO42-,推測環境中SO42-結合型態為(NH4)2SO4和(NH4)2SO4。受生質燃燒影響期間出現雲霧時,觀測較多情況DIGMI數值小於1,平均數值為0.71±0.16,代表環境中傳輸氣膠SO42-濃度大於SO2轉化成SO42-濃度。
以不受生質燃燒、谷風、雲霧影響時段的NH4+、K+、NO3-、SO42-濃度為基本案例,比較他時段前述成分濃度差異百分比,當不受生質燃燒影響但受谷風影響時段分別增加98.7%、57.4%、88.8%、40.8%,不受生質燃燒影響但受雲霧影響時段分別增加100.0%、83.6%、98.6%、68.8%。單純受生質燃燒影響時段NH4+、K+、NO3-、SO42-濃度增加100.0%、96.6%、98.8%、69.2%,受生質燃燒影響且發生谷風前述離子濃度增加100.0%、96.6%、98.8%、77.0%,最後,受生質燃燒影響且發生雲霧濃度前述離子濃度各增加100.0%、96.1%、99.1%、74.6%。
摘要(英) In this study, PM2.5 water-soluble inorganic ions (WSIIs) were monitored using an in-situ Particle-Into-Liquid-Sampler coupled to an Ion Chromatograph (PILS-IC) system at Lulin Atmospheric Background Station (LABS, 2,862 m a.s.l.) in spring 2015. Meanwhile, PM2.5 and PM10 mass concentrations, PM1 and PM10 light-scattering and -absorption coefficients, trace gas concentrations, and dynamic variations of aerosol number concentrations and size spectra monitored at LABS were also adopted for discussion.
PM2.5 mass concentraions were averaged at 3.2±0.3 μg m-3 during the period without been affected by the transported biosmass burning (BB) smoke, upslope wind, and fog event. Among PM2.5 chemical components, anion dominated WSIIs with SO42- averaged at 0.7±0.1 μg m-3 as the predominant component in contrast to relative low concentration of cation with NH4+ incapable of complete neutralizing SO42- and NO3-. Meanwhile, LABS was frequently affected by the upslope wind accompanying with the rises of CO, O3, RH, PM10, and PM2.5. Three cloud events happened in the afternoon to result in the rises of pollutant levels by having the mean values of CO, O3, and PM2.5 at 0.13±0.04 ppm, 48.3±9.4 ppbv, and 16.5±4.1 μg m-3, respectively, and that of SO42-, NH4+, and NO3- at 3.6±0.8, 2.2±1.1, and 1.5±0.8 μg m-3, respectively. The values of Dissolved Gas over Measured Ions (DIGMI) were calculated by dividing the dissolved SO42- concentrations in fog droplets in equilibrium with atmospheric SO2 over SO42- measured by PILS-IC. The DIGMI values were frequently greater than 1 before the occurrence of a cloud event in contrast to less than 1 during and after a cloud event. It indicated that SO42- was transported by the upslope wind from the hill to reduce the DIGMI values in the cloud events.
Durning the four BB events (including upslope and cloud events), mean levels of CO, O3, PM2.5, K+, SO42-, NH4+, and NO3- were 0.26±0.3 ppm, 74.2±7.9 ppbv, 28.8±6.7 μg m-3, 0.6±0.1 μg m-3, 4.1±0.8 μg m-3、3.0±1.0 μg m-3、1.9±0.4 μg m-3, respectively. In most occasions, excess NH4+ (ExNH4+) was found enough to complete neutralizing SO42- to form (NH4)2SO4 and (NH4)2SO4. The DIGMI values were often less than 1 with a mean value of 0.71±0.16 during the fog peroid when influenced by the transported BB smoke. This implied that SO42- in the transported smoke was more than that of the dissolved SO2 in the fog droplets.
Take mean values of NH4+, K+, NO3-, and SO42- during the time period not affected by the transported BB smoke, upslope wind, and fog events as the base case for comparing with that of the other time periods in terms of percentage differences are shown as follows. For the period not affected by the transported BB smoke but under the influence of the upslope wind, the differences for NH4+, K+, NO3-, and SO42- were 98.7%, 57.4%, 88.8%, and 40.8%, respectively. Similarly, the differences for the period not affected by the transported BB smoke but under the influence of fog events were 100.0%, 83.6%, 98.6%, and 68.8%, respectively. Moreover, the differences of NH4+, K+, NO3-, and SO42- for the period affected purely by the transported BB smoke were 100.0%, 96.6%, 98.8%, and 69.2%, respectively. In the case for the period affected by the transported BB smoke and upslope wind, the differences of the aforementioned WSIIs were 100.0%, 96.6%, 98.8%, and 77.0%, respectively. Finally, the differences of the precedent WSIIs were 100.0%, 96.1%, 99.1%, and 74.6%, respectively, for the period affected by the transported BB smoke and fog events.
關鍵字(中) ★ 氣膠水溶性無機離子短時間動態變化
★ 傳輸生質燃燒煙團
★ 雲霧事件氣膠特性
★ PILS-IC
關鍵字(英) ★ Short-term dynamic variations of aerosol water-soluble inorganic ions
★ transported biomass burning smoke
★ aerosol properties in fog events
★ PILS-IC
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XXIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1氣膠水溶性無機離子監測儀器 3
2.1.1 濕式前驅氣體分離器 3
2.1.2 即時氣膠水溶性監測儀器 3
2.2 生質燃燒 7
2.2.1 生質燃燒氣體和水溶性無機離子特性 7
2.2.2 生質燃燒氣膠光學特性 8
2.2.3 生質燃燒氣膠傳輸 9
2.3 氣膠水溶性無機離子 11
2.3.1 氣膠中和狀況與結合型態 12
2.4 高山地區氣體與氣膠 13
2.4.1 雲霧氣膠特性 15
2.4.2 溶解 16
第三章 研究方法 17
3.1 研究架構 17
3.2採樣地點與採樣週期 19
3.3採樣設備與方法 21
3.3.1手動採樣器 21
3.3.2採樣濾紙前處理與設置 22
3.3.3微粒揮發NO3-、NH4+、Cl-補償方法 25
3.4 大氣氣膠連續監測系統 27
3.4.1 自動監測儀器 27
3.4.2 即時氣膠水溶性無機離子層析儀 28
3.4.3 NOAA氣膠監測系統 31
3.4.4 積分式散光儀(Integrating Nephelometer) 32
3.4.5 微粒碳吸收光度計(PSAP) 34
3.4.6 粒徑分布監測系統 37
3.4.7 其他連續監測儀器 39
3.5 鹿林山不同氣團來源判別分類與逆推軌跡方法 41
3.6 雲霧中可溶性氣體溶解情況 43
第四章 結果與討論 46
4.1 氣膠水溶性無機離子手動與自動量測比對 46
4.1.1水溶性無機離子非揮發成分手動採樣與自動量測比對 46
4.1.2水溶性無機離子揮發修正手動採樣與自動量測比對 47
4.1.3 水溶性離子濃度手動濾紙揮發修正與自動量測線性關係彙整 51
4.2觀測期間氣膠水溶性無機離子動態變化 52
4.2.1氣體、氣象參數和水溶性無機離子濃度動態變化 55
4.3不受生質燃燒煙團傳輸影響氣膠水溶性離子動態變化 59
4.3.1 不受生質燃燒影響氣膠水溶性無機離子動態變化 59
4.3.2 不受生質燃燒傳輸影響時間氣膠動態變化討論 87
4.3.3 不受生質燃燒影響時間內雲霧事件氣膠動態變化 91
4.3.4 不受生質燃燒影響時間內雲霧事件氣膠動態變化彙整 125
4.4 鹿林山受生質燃燒煙團傳輸影響氣膠動態變化 135
4.4.1 生質燃燒事件 135
4.4.2 彙整鹿林山生質燃燒事件氣體資料與氣膠動態特性 196
4.5 探討鹿林山受雲霧和受生質燃燒煙團影響無機水溶性離子比值差異 204
第五章 結論與建議 211
5.1 結論 211
5.2 建議 214
第六章 參考文獻 215
附錄一、2015年3月1日至4月14日鹿林山觀測期間逆推軌跡圖 226
附錄二、2015年3月1日至4月15日鹿林山觀測期間火點圖 238
附錄三、 口試委員意見與答覆 246
參考文獻 Andreae, M.O., 1983. Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols. Science 220, 1148-1151.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles 15, 955-966.
Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001. Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets.
Cao, J.-j., Wang, Q.-y., Chow, J.C., Watson, J.G., Tie, X.-x., Shen, Z.-x., Wang, P., An, Z.-s., 2012. Impacts of aerosol compositions on visibility impairment in Xi′an, China. Atmospheric Environment 59, 559-566.
Carmichael, G.R., Peters, L.K., 1979. Some aspects of SO2 absorption by water-generalized treatment. Atmospheric Environment (1967) 13, 1505-1513.
Chadson, R., Langer, J., Rodhe, H., Leovy, C., Warren, S., 1991. Perturbation of the northern hemispheric radiative balance by backscattering from anthropogenic sulfate aerosol. Tel-lus 43, 152-163.
Chang-Graham, A.L., Profeta, L.T., Johnson, T.J., Yokelson, R.J., Laskin, A., Laskin, J., 2011. Case study of water-soluble metal containing organic constituents of biomass burning aerosol. Environmental science & technology 45, 1257-1263.
Chang, S.-Y., Fang, G.-C., Chou, C.C.-K., Chen, W.-N., 2006. Source identifications of PM10 aerosols depending on hourly measurements of soluble components characterization among different events in Taipei Basin during spring season of 2004. Chemosphere 65, 792-801.
Charlson, R.J., Schwartz, S., Hales, J., Cess, R.D., COAKLEY, j.J., Hansen, J., Hofmann, D., 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
Clegg, S., Brimblecombe, P., 1989. Solubility of ammonia in pure aqueous and multicomponent solutions. The Journal of Physical Chemistry 93, 7237-7248.
Crutzen, P.J., Andreae, M.O., 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669-1678.
De Haan, D.O., Hawkins, L.N., Kononenko, J.A., Turley, J.J., Corrigan, A.L., Tolbert, M.A., Jimenez, J.L., 2010. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets. Environmental science & technology 45, 984-991.
Dickerson, R., Kondragunta, S., Stenchikov, G., Civerolo, K., Doddridge, B., Holben, B., 1997. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 278, 827-830.
Draxler, R., Rolph, G., 2013a. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. Silver Spring, MD: NOAA Air Resources Laboratory. ready. arl. noaa. gov/HYSPLIT. php.
Draxler, R., Rolph, G., 2013b. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory, College Park, MD, 2013, h ttp.
Drewnick, F., Schwab, J., Hogrefe, O., Peters, S., Husain, L., Diamond, D., Weber, R., Demerjian, K., 2003. Intercomparison and evaluation of four semi-continuous PM 2.5 sulfate instruments. Atmospheric Environment 37, 3335-3350.
Fuzzi, S., Decesari, S., Facchini, M.C., Cavalli, F., Emblico, L., Mircea, M., Andreae, M.O., Trebs, I., Hoffer, A., Guyon, P., 2007. Overview of the inorganic and organic composition of size‐segregated aerosol in Rondonia, Brazil, from the biomass‐burning period to the onset of the wet season. Journal of Geophysical Research: Atmospheres 112.
Gao, X., Xue, L., Wang, X., Wang, T., Yuan, C., Gao, R., Zhou, Y., Nie, W., Zhang, Q., Wang, W., 2012a. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport. The Science of the total environment 433, 498-506.
Gao, X., Xue, L., Wang, X., Wang, T., Yuan, C., Gao, R., Zhou, Y., Nie, W., Zhang, Q., Wang, W., 2012b. Aerosol ionic components at Mt. Heng in central southern China: Abundances, size distribution, and impacts of long-range transport. Science of the Total Environment 433, 498-506.
Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., Xue, L., Shou, Y., Wang, J., Wang, X., Nie, W., 2011. Semi-continuous measurement of water-soluble ions in PM 2.5 in Jinan, China: temporal variations and source apportionments. Atmospheric Environment 45, 6048-6056.
Genfa, Z., Slanina, S., Boring, C.B., Jongejan, P.A., Dasgupta, P.K., 2003. Continuous wet denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta Supersite. Atmospheric Environment 37, 1351-1364.
Gorzelska, K., Talbot, R., Klemm, K., Lefer, B., Klemm, O., Gregory, G., Anderson, B., Barrie, L., 1994. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec‐Labrador regions of Canada. Journal of Geophysical Research: Atmospheres 99, 1763-1779.
Guo, S., Hu, M., Wang, Z., Slanina, J., Zhao, Y., 2009. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation. Atmospheric Chemistry and Physics Discussions 9, 23955-23986.
Hao, L., Romakkaniemi, S., Kortelainen, A., Jaatinen, A., Portin, H., Miettinen, P., Komppula, M., Leskinen, A., Virtanen, A., Smith, J.N., 2013. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry. Environmental science & technology 47, 2645-2653.
Hobbs, P.V., 2003. Evolution of gases and particles from a savanna fire in South Africa. Journal of Geophysical Research 108.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695-697.
Keene, W.C., Pszenny, A.A., Galloway, J.N., Hawley, M.E., 1986. Sea‐salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres 91, 6647-6658.
Kiehl, J., Briegleb, B., 1993. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311-314.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Li, J., Pósfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research: Atmospheres 108.
Li, L., Chen, J., Wang, L., Melluki, W., Zhou, H., 2013. Aerosol single scattering albedo affected by chemical composition: an investigation using CRDS combined with MARGA. Atmospheric Research 124, 149-157.
Lin, C.-Y., Hsu, H.-M., Lee, Y., Kuo, C., Sheng, Y.-F., Chu, D., 2009. A new transport mechanism of biomass burning from Indochina as identified by modeling studies. Atmospheric Chemistry & Physics 9.
Lin, X., Indira, N.K., Ramonet, M., Delmotte, M., Ciais, P., Bhatt, B.C., Reddy, M.V., Angchuk, D., Balakrishnan, S., Jorphail, S., Dorjai, T., Mahey, T.T., Patnaik, S., Begum, M., Brenninkmeijer, C., Durairaj, S., Kirubagaran, R., Schmidt, M., Swathi, P.S., Vinithkumar, N.V., Yver Kwok, C., Gaur, V.K., 2015. Long-lived atmospheric trace gases measurements in flask samples from three stations in India. Atmospheric Chemistry and Physics 15, 9819-9849.
Lin, Y.C., Lin, C.Y., Lin, P.H., Engling, G., Lin, Y.C., Lan, Y.Y., June Chang, C.W., Kuo, T.H., Hsu, W.T., Ting, C.C., 2013. Influence of Southeast Asian biomass burning on ozone and carbon monoxide over subtropical Taiwan. Atmospheric Environment 64, 358-365.
Mather, T., Allen, A., Oppenheimer, C., Pyle, D., McGonigle, A., 2003. Size-resolved characterisation of soluble ions in the particles in the tropospheric plume of Masaya volcano, Nicaragua: Origins and plume processing. Journal of Atmospheric Chemistry 46, 207-237.
Mauderly, J.L., Chow, J.C., 2008. Health effects of organic aerosols. Inhalation toxicology 20, 257-288.
Meng, Z., Seinfeld, J.H., 1994. On the source of the submicrometer droplet mode of urban and regional aerosols. Aerosol Science and Technology 20, 253-265.
Mwaniki, G.R., Rosenkrance, C., Wallace, H.W., Jobson, B.T., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R., VanReken, T.M., 2014. Factors contributing to elevated concentrations of PM 2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
O′Sullivan, D.W., Lee, M., Noone, B.C., Heikes, B.G., 1996. Henry′s law constant determinations for hydrogen peroxide, methyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyacetic acid. The Journal of Physical Chemistry 100, 3241-3247.
Orsini, D.A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., Weber, R.J., 2003. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment 37, 1243-1259.
Pathak, R.K., Wu, W.S., Wang, T., 2008. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics Discussions 8, 11487-11517.
Ram, K., Sarin, M., Sudheer, A., Rengarajan, R., 2012. Carbonaceous and secondary inorganic aerosols during wintertime fog and haze over urban sites in the Indo-Gangetic Plain. Aerosol Air Qual. Res 12, 359-370.
Ram, K., Sarin, M.M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Ren, Y., Ding, A., Wang, T., Shen, X., Guo, J., Zhang, J., Wang, Y., Xu, P., Wang, X., Gao, J., 2009. Measurement of gas-phase total peroxides at the summit of Mount Tai in China. Atmospheric Environment 43, 1702-1711.
Riuttanen, L., Dal Maso, M., de Leeuw, G., Riipinen, I., Sogacheva, L., Vakkari, V., Laakso, L., Kulmala, M., 2013. Long-range transport of biomass burning smoke to Finland in 2006. Atmospheric Chemistry and Physics Discussions 13, 4289-4330.
Roger, J.C., Guinot, B., Cachier, H., Mallet, M., Dubovik, O., Yu, T., 2009. Aerosol complexity in megacities: From size‐resolved chemical composition to optical properties of the Beijing atmospheric particles. Geophysical Research Letters 36.
Ryu, S., Kwon, B., Kim, Y., Kim, H., Chun, K., 2007. Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric research 84, 362-373.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., Lee, C.-T., Yang, C.-F.O., Wang, S.-H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2393-2400.
Shon, Z.-H., Kim, K.-H., Song, S.-K., Jung, K., Kim, N.-J., Lee, J.-B., 2012. Relationship between water-soluble ions in PM 2.5 and their precursor gases in Seoul megacity. Atmospheric environment 59, 540-550.
Shrestha, A.B., Wake, C.P., Dibb, J.E., 1997. Chemical composition of aerosol and snow in the high Himalaya during the summer monsoon season. Atmospheric Environment 31, 2815-2826.
Simon, P.K., Dasgupta, P.K., 1993. Wet effluent denuder coupled liquid/ion chromatography systems: annular and parallel plate denuders. Analytical Chemistry 65, 1134-1139.
Simon, S., Klemm, O., El-Madany, T., Walk, J., Amelung, K., Lin, P.-H., Chang, S.-C., Lin, N.-H., Engling, G., Hsu, S.-C., 2016. Chemical composition of fog water at four sites in Taiwan. Aerosol Air Qual Res 16, 618-631.
Slanina, J., Ten Brink, H., Otjes, R., Even, A., Jongejan, P., Khlystov, A., Waijers-Ijpelaan, A., Hu, M., Lu, Y., 2001. The continuous analysis of nitrate and ammonium in aerosols by the steam jet aerosol collector (SJAC): extension and validation of the methodology. Atmospheric Environment 35, 2319-2330.
Solomon, S., 2007. IPCC (2007): Climate Change The Physical Science Basis, AGU Fall Meeting Abstracts, p. 01.
Sun, J., Qin, D., Mayewski, P.A., Dibb, J.E., Whitlow, S., Li, Z., Yang, Q., 1998. Soluble species in aerosol and snow and their relationship at Glacier 1, Tien Shan, China. Journal of Geophysical Research 103, 28,021.
Tang, I.N., 1996. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research: Atmospheres 101, 19245-19250.
Tanner, R.L., Parkhurst, W.J., Valente, M.L., Phillips, W.D., 2004. Regional composition of PM 2.5 aerosols measured at urban, rural and “background” sites in the Tennessee valley. Atmospheric Environment 38, 3143-3153.
Twigg, M., Di Marco, C., Leeson, S., van Dijk, N., Jones, M., Leith, I., Morrison, E., Coyle, M., Proost, R., Peeters, A., 2015. Water soluble aerosols and gases at a UK background site–Part 1: Controls of PM 2.5 and PM 10 aerosol composition. Atmospheric Chemistry and Physics 15, 8131-8145.
Ueda, S., Hirose, Y., Miura, K., Okochi, H., 2014. Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing. Atmospheric Research 137, 216-227.
Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, J.L., Wang, W., 2011a. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmospheric Research 99, 434-442.
Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, J.L., Wang, W., 2011b. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmospheric Research 99, 434-442.
Warneck, P., 1999. Chemistry of the natural atmosphere. Academic press.
Watson, J.G., 2002. Visibility: Science and regulation. Journal of the Air & Waste Management Association 52, 628-713.
Weber, R., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P., Brechtel, F., 2001. A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Science & Technology 35, 718-727.
White, W., Roberts, P., 1977. On the nature and origins of visibility-reducing aerosols in the Los Angeles air basin. Atmospheric Environment (1967) 11, 803-812.
Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., Yin, L., 2012. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research 104-105, 264-272.
Xue, J., Lau, A.K., Yu, J.Z., 2011. A study of acidity on PM 2.5 in Hong Kong using online ionic chemical composition measurements. Atmospheric environment 45, 7081-7088.
Xue, J., Yuan, Z., Lau, A.K., Yu, J.Z., 2014. Insights into factors affecting nitrate in PM2. 5 in a polluted high NOx environment through hourly observations and size distribution measurements. Journal of Geophysical Research: Atmospheres 119, 4888-4902.
Yao, T., Fung, J.C.H., Ma, H., Lau, A., Chan, P.W., Yu, J., Xue, J., 2014. Enhancement in secondary particulate matter production due to mountain trapping. Atmospheric research 147, 227-236.
Yokelson, R.J., Griffith, D.W.T., Ward, D.E., 1996. Open-path Fourier transform infrared studies of large-scale laboratory biomass fires. Journal of Geophysical Research: Atmospheres 101, 21067-21080.
Yu, X., Ma, J., Kumar, K.R., Zhu, B., An, J., He, J., Li, M., 2016. Measurement and analysis of surface aerosol optical properties over urban Nanjing in the Chinese Yangtze River Delta. Science of The Total Environment 542, 277-291.
Zhang, F., Cheng, H.-r., Wang, Z.-w., Lv, X.-p., Zhu, Z.-m., Zhang, G., Wang, X.-m., 2014. Fine particles (PM 2.5) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events. Atmospheric Environment 86, 193-202.
Zhang, N., Cao, J., Ho, K., He, Y., 2012. Chemical characterization of aerosol collected at Mt. Yulong in wintertime on the southeastern Tibetan Plateau. Atmospheric Research 107, 76-85.
Zhang, N., He, Y., Wang, C., He, X., Xin, H., 2011. [Chemical characteristic of water-soluble ions in total suspended particles (TSP) at Lijiang winter time]. Huan jing ke xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui" Huan jing ke xue" bian ji wei yuan hui.] 32, 619-625.
Zhang, Q., Tie, X., Lin, W., Cao, J., Quan, J., Ran, L., Xu, W., 2013a. Variability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2. Particuology 11, 41-47.
Zhang, Q., Tie, X., Lin, W., Cao, J., Quan, J., Ran, L., Xu, W., 2013b. Variability of SO 2 in an intensive fog in North China Plain: Evidence of high solubility of SO 2. Particuology 11, 41-47.
Zhou, S., Wang, Z., Gao, R., Xue, L., Yuan, C., Wang, T., Gao, X., Wang, X., Nie, W., Xu, Z., 2012. Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmospheric environment 63, 203-212.
Zhou, Y., Wang, T., Gao, X., Xue, L., Wang, X., Wang, Z., Gao, J., Zhang, Q., Wang, W., 2010. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 m a.s.l.) in central-eastern China. Journal of Atmospheric Chemistry 64, 107-127.

林家慶,2008,鹿林山空氣品質背景監測之背景值分析。國立中央大學大氣物理所碩士論文。
許紹鵬,2010,鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性。國立中央大學環境工程研究所碩士論文。
張佑嘉,2011,中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性。國立中央大學環境工程研究所碩士論文。
林書暉,2013。2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化。國立中央大學環境工程研究所碩士論文。
蔡茗宇,2014。2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性。國立中央大學環境工程研究所碩士論文。
蔡承佑,2016。2014年鹿林山氣膠水溶性無機離子短時間動態變化特性。國立中央大學環境工程研究所碩士論文。
莊仲霆,2016。2015年中南半島近生質燃燒源與煙團傳輸氣膠特性解析。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-te Lee) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明