博碩士論文 102328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.137.189.226
姓名 黃子垣(Tzu-yuan Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 甲烷固態氧化物燃料電池複合系統分析
(Analysis of Methane Fed Solid Oxide Fuel Cell Hybrid Systems)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對中溫質子傳導型固態氧化物燃料電池複合系統分析。根據理論利用Matlab計算出燃料電池之性能曲線,並應用於商用軟體Thermolib進行系統模擬。文中建立四種不同燃料電池複合系統,各系統之系統配置有些許不同,並且在相同操作條件下進行比較,操作條件為燃料當量比1.4 ~ 1.7、空氣當量比2 ~ 4。
摘要(英) In this research, the performance of intermediate-temperature proton-conducting solid oxide fuel cell hybrid systems is investigated. It is analyzed by using Matlab/Simulink/Thermolib. There are four different fuel cell hybrid systems. The configuration of each system is slightly different, but is analyzed under the same operating conditions. Flow rates of hydrogen and air are controlled by assigning different stoichiometric ratio, which are 1.4 - 1.7 and 2 - 4 respectively.
關鍵字(中) ★ 中溫
★ 質子傳導
★ 固態氧化物燃料電池
★ 渦輪機
★ 甲醇合成反應
★ 碳捕捉及再利用
關鍵字(英) ★ Intermediate-temperature
★ Proton-conducting
★ Solid oxide fuel cell
★ Micro gas turbine
★ Methanol synthesis reaction
★ Carbon capture and reuse
論文目次 目錄
中文摘要 I
ABSTRACT III
致謝 V
目錄 VII
圖目錄 XI
表目錄 XIV
符號表 XVII
第一章 緒論 1
1.1 前言 1
1.2 固態氧化物燃料電池複合系統 2
1.2.1固態氧化物燃料電池之工作原理 2
1.2.2 燃料電池極化現象 5
1.2.3固態氧化物燃料電池結構 7
1.2.4 固態氧化物燃料電池系統 8
1.2.5 熱回收系統 10
1.2.6 減碳系統: 10
1.3 文獻回顧 10
1.3.1 SOFC數學模型: 10
1.3.2 SOFC系統: 14
1.3.3 碳捕捉與應用 16
1.4 研究動機與方向 17
第二章 理論分析 19
2.1 問題描述與假設 19
2.2 系統模型 19
2.2.1 固態氧化物燃料電池模型 19
2.2.4 壓縮機 24
2.2.5 混和器 25
2.2.6 重組/合成反應器 25
2.2.7 熱交換器 26
2.2.8 微氣渦輪機(Micro gas turbine, MGT) 27
2.2.9 後燃器 27
2.2.10 氫氣傳輸膜(Hydrogen transport membrane, HTM) 28
2.2.11 水分離器 28
2.2.12 電源轉換器 DC/AC 28
2.2.13 效率定義 28
2.3 參數條件 30
第三章 數值方法與驗證 32
3.1 數值方法 32
3.2 程式驗證 35
第四章 結果與討論 39
4.1 質子傳導型固態氧化物燃料電池性能曲線 39
4.2 系統設計之比較 42
4.2.1 燃料及空氣當量對系統A的影響 49
4.2.2 燃料及空氣當量對系統B的影響 55
4.2.3 燃料及空氣當量對系統C的影響 63
4.2.4 燃料及空氣當量對系統D的影響 74
4.3系統減碳效益 86
第五章 結論與未來建議 87
5.1 結論 87
5.2 未來建議 88
第六章 參考文獻 89
附錄 A 系統各節點之氣體組成表 93
參考文獻 [1] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf
[2] S. H. Chan and Z. T. Xia, “Polarization effects in electrolyte / electrode-supported solid oxide fuel cells,” pp. 339–347, 2002.
[3] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. a. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” J. Power Sources, vol. 122, no. 1, pp. 9–18, 2003.
[4] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, vol. 161, no. 2, pp. 1012–1022, Oct. 2006.
[5] H. W. Chang, C. M. Huang, and S. S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors,” J. Power Sources, vol. 250, pp. 21–29, Mar. 2014.
[6] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells.,” Chem. Soc. Rev., vol. 37, no. 8, pp. 1568–78, Aug. 2008.
[7] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, vol. 26, no. 10, pp. 1103–1108, 2001.
[8] A. K. Demin, P. E. Tsiakaras, V. a. Sobyanin, and S. Y. Hramova, “Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor,” Solid State Ionics, vol. 152–153, pp. 555–560, 2002.
[9] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, vol. 7, no. 4, pp. 269–278, 2007.
[10] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” J. Power Sources, vol. 183, no. 2, pp. 682–686, 2008.
[11] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, vol. 181, no. 35–36, pp. 1568–1576, Nov. 2010.
[12] H. Iwahara, “High temperature proton conducting oxides and their application to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionics, no. 1, pp. 573-578, 1987.
[13] A. Arpornwichanop, Y. Patcharavorachot, and S. Assabumrungrat, “Analysis of a proton-conducting SOFC with direct internal reforming,” Chem. Eng. Sci., vol. 65, no. 1, pp. 581–589, 2010.
[14] J. Bu, P. G. Jönsson, and Z. Zhao, “Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3−δ (Ln = Y, Sm, Gd, Dy) electrolytes,” J. Power Sources, vol. 272, pp. 786–793, Dec. 2014.
[15] A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation — A review,” Renew. Sustain. Energy Rev., vol. 20, pp. 430–442, 2013.
[16] C. Zamfirescu and I. Dincer, “Thermochimica Acta Thermodynamic performance analysis and optimization of a SOFC-H + system,” vol. 486, pp. 32–40, 2009.
[17] H. Xu, Z. Dang, and B.-F. Bai, “Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell,” Appl. Therm. Eng., vol. 50, no. 1, pp. 1101–1110, Jan. 2013.
[18] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” vol. 158, pp. 1290–1305, 2006.
[19] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, and M. Ja, “Small-Scale Biogas-SOFC Plant : Technical Analysis and Assessment of Di ff erent Fuel Reforming Options,” 2014.
[20] W. Doherty, A. Reynolds, and D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” J. Power Sources, vol. 277, pp. 292–303, Mar. 2015.
[21] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, “Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system,” J. Power Sources, vol. 223, pp. 9–17, 2013.
[22] S. K. Park, J.-H. Ahn, and T. S. Kim, “Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture,” Appl. Energy, vol. 88, no. 9, pp. 2976–2987, Sep. 2011.
[23] N. S. Siefert and S. Litster, “Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants,” Appl. Energy, vol. 107, pp. 315–328, Jul. 2013.
[24] A. Lanzini, T. G. Kreutz, E. Martelli, and M. Santarelli, “Energy and economic performance of novel integrated gasifier fuel cell (IGFC) cycles with carbon capture,” Int. J. Greenh. Gas Control, vol. 26, pp. 169–184, Jul. 2014.
[25] S. Chen, N. Lior, and W. Xiang, “Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture,” Appl. Energy, vol. 146, pp. 298–312, 2015.
[26] L. Barelli and a. Ottaviano, “Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions,” Energy, vol. 71, pp. 118–129, 2014.
[27] S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, and J. B. Joshi, “Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies,” Chem. Eng. Res. Des., vol. 92, no. 11, pp. 2557–2567, 2014.
[28] H. Taghdisian, F. Farhadi, and M. R. Pishvaie, “An optimization-oriented green design for methanol plants,” J. Chem. Technol. Biotechnol., vol. 87, no. 8, pp. 1111–1120, 2012.
[29] D. Milani, R. Khalilpour, G. Zahedi, and A. Abbas, “A model-based analysis of CO2 utilization in methanol synthesis plant,” J. CO2 Util., vol. 10, pp. 12–22, 2015.
[30] R. J. Pearson, M. D. Eisaman, J. W. G. Turner, P. P. Edwards, Z. Jiang, V. L. Kuznetsov, K. a. Littau, L. Di Marco, and S. R. G. Taylor, “Energy storage via carbon-neutral fuels made from CO 2, Water, and Renewable Energy,” Proc. IEEE, vol. 100, no. 2, pp. 440–460, 2012.
[31] A. K. Sayah and A. K. Sayah, “Wind-hydrogen utilization for methanol production: An economy assessment in Iran,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3570–3574, 2011.
[32] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz,王曉紅、黃宏 譯,「燃料電池基礎」,全華科技圖書股份有限公司,2008
[33] http://www.taipower.com.tw/
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2015-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明