參考文獻 |
[1] A. Uhlir, "Electrolytic shaping of germanium and silicon," Bell Syst. Tech. J., vol. 35, pp. 333-347, 1956.
[2] L. Z. Jia, S. L.; Wong, S. P.; Wilson, I. H.; Hark, S. K.; Liu, Z. F.; Cai, S. M., "Further evidence for the quantum confined electrochemistry model of the formation mechanism of p--type porous silicon," Appl. Phys. Lett. , vol. 69, pp. 3399-3401, 1996.
[3] D. R. Turner, "Electropolishing silicon in hydrofluoric acid solutions," J. Electrochem. Soc., vol. 105, pp. 402-408, 1958.
[4] C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, "Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon," Journal of Physics C: Solid State Physics, vol. 17, p. 6535, 1984.
[5] K. O. T. Osaka, and S. Nakahara, "Classification of the Pore Structure of n-Type Silicon and Its Microstructure," J. Electrochem. Soc., vol. 144, pp. 3226-3237, 1997.
[6] X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, "Black silicon: fabrication methods, properties and solar energy applications," Energy Environ. Sci., vol. 7, pp. 3223-3263, 2014.
[7] M. Hajj-Hassan, M. Khayyat-Kholghi, H. F. Wang, V. Chodavarapu, and J. E. Henderson, "Response of murine bone marrow-derived mesenchymal stromal cells to dry-etched porous silicon scaffolds," J Biomed Mater Res A., vol. 99A, pp. 269-274, 2011.
[8] M. Hajj-Hassan, M. C. Cheung, and V. P. Chodavarapu, "Ultra-thin porous silicon membranes fabricated using dry etching," Micro & Nano Letters, vol. 6, pp. 226-228, 2011.
[9] M. C. K. Cheung, P. J. R. Roche, M. Hajj-Hassan, A. G. Kirk, Z. T. Mi, and V. P. Chodavarapu, "Controlling optical properties and surface morphology of dry etched porous silicon (vol 5, 053503, 2011)," Journal of Nanophotonics, vol. 5, p. 1, 2011.
[10] H. Zheng, M. G. Han, P. Zheng, L. Zheng, H. B. Qin, and L. J. Deng, "Porous silicon templates prepared by Cu-assisted chemical etching," Materials Letters, vol. 118, pp. 146-149, 2014.
[11] A. Backes and U. Schmid, "Impact of doping level on the metal assisted chemical etching of p-type silicon," Sens Actuators B Chem., vol. 193, pp. 883-887, 2014.
[12] C. L. He, X. F. Yang, G. F. Ma, J. M. Wang, D. L. Zhao, and Q. K. Cai, "EFFECT OF MOLE FRACTION OF HF AND H2O2 ON MORPHOLOGY OF POROUS SILICON FORMED BY Ag ASSISTED CHEMICAL ETCHING," Acta Metallurgica Sinica, vol. 49, pp. 989-995, 2013.
[13] J. Bannard, "Electrochemical machining," J. Appl. Electrochem., vol. 7, pp. 1-29, 1977.
[14] C. X. Thang and V. H. Pham, "Luminescence from micro-/nano-scale anodic aluminum oxide containing electrochemical etching derived nanoporous silicon," Materials Letters, vol. 146, pp. 55-58, 2015.
[15] S. D. Campbell, L. A. Jones, E. Nakamichi, F. X. Wei, L. D. Zajchowski, and D. F. Thomas, "SPECTRAL AND STRUCTURAL FEATURES OF POROUS SILICON PREPARED BY CHEMICAL AND ELECTROCHEMICAL ETCHING PROCESSES," Journal of Vacuum Science & Technology B, vol. 13, pp. 1184-1189, 1995.
[16] J. Bannard, "Electrochemical machining," J. Appl. Electrochem. , vol. 7, pp. 1-29, 1977.
[17] P. Kumar and P. Huber, "Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon," Journal of Nanomaterials, vol. 2007, pp. 1-4, 2007.
[18] T. Rinken, "State of the Art in Biosensors - General Aspects," InTech, 2013.
[19] K. Kholostov, L. Serenelli, M. Izzi, M. Tucci, and M. Balucani, "Electroplated contacts and porous silicon for silicon based solar cells applications," Materials Science and Engineering: B, vol. 194, pp. 78-85, 2015.
[20] N. Naderi and M. R. Hashim, "A combination of electroless and electrochemical etching methods for enhancing the uniformity of porous silicon substrate for light detection application," Applied Surface Science, vol. 258, pp. 6436-6440, 2012.
[21] V. A. Moshnikov, I. Gracheva, A. S. Lenshin, Y. M. Spivak, M. G. Anchkov, V. V. Kuznetsov, et al., "Porous silicon with embedded metal oxides for gas sensing applications," Journal of Non-Crystalline Solids, vol. 358, pp. 590-595, 2012.
[22] F. A. Harraz, "Porous silicon chemical sensors and biosensors: A review," Sensors and Actuators B: Chemical, vol. 202, pp. 897-912, 2014.
[23] C. C. Tu, Y. N. Chou, H. C. Hung, J. Wu, S. Jiang, and L. Y. Lin, "Fluorescent porous silicon biological probes with high quantum efficiency and stability," Opt Express, vol. 22, pp. 29996-30003, 2014.
[24] G. K. Celler and S. Cristoloveanu, "Frontiers of silicon-on-insulator," Journal of Applied Physics, vol. 93, p. 4955, 2003.
[25] D. S. Chao, D. Y. Shu, S. B. Hung, W. Y. Hsieh, and M. J. Tsai, "Investigation of silicon-on-insulator (SOI) substrate preparation using the smart-cutTM process," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 237, pp. 197-202, 2005.
[26] A. Dehzangi, F. Larki, M. G. Naseri, M. Navasery, B. Y. Majlis, M. F. Razip Wee, et al., "Fabrication and simulation of single crystal p-type Si nanowire using SOI technology," Applied Surface Science, vol. 334, pp. 87-93, 2015.
[27] J. D. B. M. J. Beale, M. J. Uren, N. G. Uren, N. G. Chew and A. G. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon," J. Cryst. Growth vol. 73, pp. 622-636, 1985.
[28] L. M. S. T. A. Witten, "Diffusion-limited aggregation," Phys. Rev. B vol. 27, pp. 5686-5697, 1983.
[29] M. M. St. Frohnhoff, M. G. Berger, M. Thönissen, H. Lüth, and H. Münder, "An Extended Quantum Model for Porous Silicon Formation," J. Electrochem. Soc. , vol. 142, pp. 615-620, 1995.
[30] S. Johnson, A. Markwitz, M. Rudolphi, and H. Baumann, "Nanostructuring of silicon (100) using electron beam rapid thermal annealing," Journal of Applied Physics, vol. 96, p. 605, 2004.
|