以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:56 、訪客IP:3.142.212.153
姓名 陳和謙(Ho-Chien Chen) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 鍺量子點光電晶體暫態載子傳輸特性分析
(Characterization of carrier dynamics in Ge quantum dots through Ge quantum-dot MOSFETs using pulsed voltage technique)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 鍺材料具有高載子遷移率及窄能隙等優點,搭配此材料製作的半導體元件,得以實現適用於波長1.55μm之光偵測器或是高速電晶體。
本論文針對鍺量子點金氧半與單電洞電晶體,開發合適的高速脈波量測系統。由控制程式的設計,佐以高靈敏度的硬體配置,進行瞬時同步的脈波輸入和電氣訊號輸出。利用此量測系統,可透過改變脈波輸入時間、輸入電壓或脈波輸入元件端,觀察在不同輸入條件下,鍺量子點元件中瞬間開關/切換的暫態響應,進而了解鍺量子點元件的即時操作行為以及推論載子在鍺量子點元件內部的時變傳輸機制。
量測結果顯示,鍺量子點光電晶體受到高速的閘極脈衝驅動後,會迅速進入深度空乏暫態,產生暫態過衝電流等與穩態截然不同的電流特性。且當脈衝電壓、溫度、閘介電層厚度、以及光照強度等條件發生改變時,元件在非平衡態下的瞬間少數載子數量有顯著變化,可明顯由鍺量子點光電晶體之暫態響應觀察到。反觀鍺量子點單電晶體或者無量子點的金氧半場效電晶體,皆未觀察到如光電晶體般奇特的暫態反應。
深入探討上述的鍺量子點元件的載子傳輸機制,有助於相關元件的改良、設計,甚至利用其時變操作特性,進一步開發適合應用的上市電子產品。
摘要(英) In this thesis, we designed a high-speed pulse system for Ge QD MOS phototransistors and single hole transistors(SHT). With this measurement system, synchronization on voltage pulse input and current signal output measurement can be implemented. Consequently, dynamic current change happened in Ge QD electronic devices is studied in different input conditions such as pulse width and pulse voltage. Furthermore, the carrier dynamic transport mechanism is investigated.
Ge QD MOS phototransistors driven by high-speed gate voltage pulses would quickly go into transient deep depletion state, which shows an electrical behavior different from the thermal equilibrium states such as overshoot current. The quantity of transient non-equilibrium minor carriers in Ge QD MOS phototransistors have tremendous differences with various illumination power, pulse voltage, temperature and gate oxide thickness. Such transient response is only observable in Ge QD MOS phototransistors but not in MOSFETs without Ge QD and Ge QD single hole transistors.
Further studies on transient transportation of the Ge QD MOS phototransistors can provide helpful information for improvement and applications in the future.
關鍵字(中) ★ 光電晶體
★ 鍺量子點
★ 暫態關鍵字(英) 論文目次 中文摘要...................................................................i
英文摘要..................................................................ii
致謝..................................................................iii
目錄.....................................................................v
圖目錄..................................................................viii
表目錄..................................................................xiii
第一章、 簡介與研究動機....................................................1
第二章、 鍺量子點光電晶體製作方法與操作特性................................6
2-1 鍺量子點的形成方法與光學特性......................................6
2-2 鍺量子點光電晶體製作流程..........................................8
2-3 鍺量子點光電晶體操作機制.........................................13
2-3-1 浮點記憶體基本原理..........................................14
2-3-2 未照光狀態元件操作機制......................................15
2-3-3 照光狀態元件操作機制........................................15
第三章、 高速暫態電流量測系統架構設計.....................................18
3-1 電子元件暫態響應.................................................18
3-2 高速暫態電流量測系統.............................................20
3-2-1 硬體配置....................................................21
3-2-2 控制程式設計................................................22
3-2-3 系統功能實測................................................23
第四章、 鍺量子點光電晶體暫態特性量測與傳輸機制分析.......................27
4-1 電壓脈衝應力作用後之元件的電氣特性...............................27
4-1-1電壓脈衝應力作用後之無鍺量子點金氧半場效電晶體的電氣特性.....27
4-1-2電壓脈衝應力作用後之鍺量子點光電晶體的電氣特性...............29
4-1-3電壓脈衝應力作用後之單電洞電晶體的電氣特性...................32
4-2 鍺量子點光電晶體時變電流特性的調變參數...........................35
4-2-1 改變脈衝寬度和光功率對應之電流時變特性......................36
4-2-2 改變溫度和光功率對應之電流時變特性..........................41
4-2-3 改變閘極偏壓和光功率對應之電流時變特性......................46
4-2-4 改變閘極介電層厚度和光功率對應之電流時變特性................50
4-3 鍺量子點光電晶體暫態形成機制.....................................54
4-3-1金氧半電容的深度空乏.........................................54
4-3-2鍺量子點光電晶體的深度空乏暫態響應...........................55
4-4 自光電晶體時變電流探討鍺量子點近電感特性.........................59
4-4-1 RLC串聯電路之二階系統響應..................................59
4-4-2 入射光功率與鍺量子點電感相依特性............................61
4-4-3 溫度與鍺量子點電感相依特性..................................62
第五章、 總結與未來展望...................................................64
參考文獻.................................................................66
附錄一...................................................................69
參考文獻 [1] H. J. R. Dutton, “Understanding Optical Communications,” p4, 1998.
[2] J. N. Shive, “A new germanium photo-resistance cell,” Phs. Rev., 76, 575, 1949.
[3] W. Shockley, M. Sparks, and G. K. Teal, “P-n junction transistors,” Phs. Rev., 83, 151, 1951.
[4] K. Matsumoto et al., “A New MOS Phototransistor Operating in a Non-Destructive Readout Mode, ”Japanese Journal of Applied Physics, 24, no.5, L323-325, 1985.
[5] R. H. Walden, “A review of recent progress in InP-based optoelectronic integrated circuit receiver front-ends,” Int. J. High Speed Electron. Syst., 9, 631, 1998.
[6] W. C. Dash et al., “Intrinsic optical absorption in single-crystal germanium and silicon at 77℃ and 300℃,” Physical Review, 99, 1151, 1955.
[7] J. E. Roth et al., “Optical modulator on Si employing Ge quantum wells,” Frontiers in Optics., 2007.
[8] 陳英豪,“閘介電層含鍺量子點複晶矽薄膜電晶體之光響應研究”,碩士論文,國立中央大學,民國 98 年。
[9] 蓋婉玉,“鍺量子點光電晶體與浮點記憶體之研製及電性分析”,碩士論文,國立中央大學,民國 103 年。
[10] X. Zheng, J. Jin, and Y. J. Yan, “Dynamic electronic response of a quantum dot driven by time-dependent voltage,” The Journal of Chemical Physics, 129, 184112, 2008.
[11] P. Liu et al., “Transient photoresponse and incident power dependence of high-efficiency germanium quantum dot photodetectors,” Journal of Applied Physics, 112, 083103, 2012.
[12] 郭銘浩,““量身訂作”鍺量子點以應用於近紅外線光偵測元件之研製”,碩士論文,國立中央大學,民國 102 年。
[13] M. H. Kuo et al., “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Physical review letters, 101, 223107, 2012.
[14] C. Y. Chien et al., “Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots,” Nanotechnology, 22, 435602, 2011.
[15] M. H. Kuo et al., “Designer Germanium Quantum Dot Phototransistor for Near Infrared Optical Detection and Amplification,” Nanotechnology, 26 , 055203 2015.
[16] M. Kanoun et al., “Electronic properties of Ge nanocrystals for non volatile memory applications,” Solid-State Electronics, 50, 1310-1314, 2006.
[17] S. O. Kasap, “Principles of Electronic Materials and Devices,” 3rd edition, 2005.
[18] “Model 4200-SCS Semiconductor Characterization System User′s Manual,” Keithley Instruments Inc., 2013.
[19] “Model SR570 Low-Noise Current Preamplifier,” Stanford Research Systems Inc., 2005.
[20] “Model 428 Current Amplifier Instruction Manual,” Keithley Instruments Inc., 1999.
[21] I. H. Chen, K. H. Chen, W. T. Lai and P. W. Li, “Single Germanium Quantum-dot Placement Along With Self-Aligned Electrodes for Effective Management of Single Charge Tunneling,” IEEE Trans. Electron Devices, 59, 3224, 2013.
[22] I. H. Chen, W. T. Lai and P. W. Li, “Realization of solid-state nanothermometer using Ge quantum-dot single-hole transistors in few-hole regime,” Applied Physics Letters, 104, 243506, 2014.
[23] Dieter K. Schroder, “Advanced MOS Devices,” first edition, 1987.
指導教授 李佩雯、郭明庭(Pei-Wen Li Ming-Ting Kuo) 審核日期 2015-8-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare