參考文獻 |
[1] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan, “Brain-computer interface technology: a review of the first international meeting”, IEEE transactions on rehabilitation engineering, vol. 8, no. 2, pp. 164-173, 2000.
[2] J.-J. Vidal, “Toward direct brain-computer communication” , Annual review of Biophysics and Bioengineering, vol. 2, no. 1, pp. 157-180, 1973.
[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan,“Brain–computer interfaces for communication and control”, Clinical neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.
[4] J. A. Wilson, E. Felton, P. C. Garell, G. Schalk, and J. C. Williams, “ECoG factors underlying multimodal control of a brain-computer interface” ,Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 14, no. 2, pp. 246-250, 2006.
[5] I. Volosyak, D. Valbuena, T. Malechka, J. Peuscher, and A. Gräser, “Brain–computer interface using water-based electrodes”, Journal of neural engineering, vol. 7, no. 6, pp. 066007, 2010.
[6] V. Mihajlovic, G. Garcia Molina, and J. Peuscher, "To what extent can dry and water-based EEG electrodes replace conductive gel ones?: A Steady State Visual Evoked Potential Brain-computer Interface Case Study."
[7] C. Guger, G. Krausz, B. Z. Allison, and G. Edlinger, “Comparison of dry and gel based electrodes for P300 brain–computer interfaces” , Frontiers in neuroscience, vol. 6, 2012.
[8] "Comparison of consumer brain-computer interfaces," 取自https://en.wikipedia.org/wiki/Comparison_of_consumer_brain%E2%80%93computer_interfaces.
[9] R. B. Silberstein, and A. Pipingas, “Steady-state visually evoked potential topography during the Wisconsin card sorting test”, Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 96, no. 1, pp. 24-35, 1995.
[10] R. B. Silberstein, P. L. Nunez, A. Pipingas, P. Harris, and F. Danieli, “Steady state visually evoked potential (SSVEP) topography in a graded working memory task”, International Journal of Psychophysiology, vol. 42, no. 2, pp. 219-232, 2001.
[11] R. B. Silberstein, P. G. Harris, G. A. Nield, and A. Pipingas, “Frontal steady-state potential changes predict long-term recognition memory performance” ,International Journal of Psychophysiology, vol. 39, no. 1, pp. 79-85, 2000.
[12] S. Moratti, A. Keil, and M. Stolarova, “Motivated attention in emotional picture processing is reflected by activity modulation in cortical attention networks”, Neuroimage, vol. 21, no. 3, pp. 954-964, 2004.
[13] A. Kemp, M. Gray, P. Eide, R. Silberstein, and P. Nathan, “Steady-state visually evoked potential topography during processing of emotional valence in healthy subjects” ,NeuroImage, vol. 17, no. 4, pp. 1684-1692, 2002.
[14] A. Keil, T. Gruber, M. M. Müller, S. Moratti, M. Stolarova, M. M. Bradley, and P. J. Lang, “Early modulation of visual perception by emotional arousal: evidence from steady-state visual evoked brain potentials” ,Cognitive, Affective, & Behavioral Neuroscience, vol. 3, no. 3, pp. 195-206, 2003.
[15] F.-B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, “Steady-state visually evoked potentials: focus on essential paradigms and future perspectives” ,Progress in neurobiology, vol. 90, no. 4, pp. 418-438, 2010.
[16] J. J. Nassi, and E. M. Callaway, “Parallel processing strategies of the primate visual system” ,Nature Reviews Neuroscience, vol. 10, no. 5, pp. 360-372, 2009.
[17] H. Kolb, “Midget pathways of the primate retina underlie resolution and red green color opponency ”, 2012.取自http://webvision.med.utah.edu/book/part-iii-retinal-circuits/midget-pathways-of-the-primate-retina-underly-resolution/
[18] J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P. Tormene, and G. E. Holder, “Visual evoked potentials standard (2004)” ,Documenta ophthalmologica, vol. 108, no. 2, pp. 115-123, 2004.
[19] P. R. Kennedy, R. A. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe, “Direct control of a computer from the human central nervous system”, Rehabilitation Engineering, IEEE Transactions on, vol. 8, no. 2, pp. 198-202, 2000.
[20] S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, “A direct brain interface based on event-related potentials” ,IEEE transactions on rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, vol. 8, no. 2, pp. 180-185, 2000.
[21] E. E. Sutter, “The Brain Response Interface - Communication through Visually-Induced Electrical Brain Responses” ,Journal of Microcomputer Applications, vol. 15, no. 1, pp. 31-45, Jan, 1992.
[22] P. Cilliers, and A. Van Der Kouwe, "A VEP-based computer interface for C2-ouadriplegics." pp. 1263-1263.
[23] R. Oostenveld, and P. Praamstra, “The five percent electrode system for high-resolution EEG and ERP measurements” ,Clinical neurophysiology, vol. 112, no. 4, pp. 713-719, 2001.
[24] S. P. Kelly, E. C. Lalor, R. B. Reilly, and J. J. Foxe, “Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication” ,Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 13, no. 2, pp. 172-178, 2005.
[25] C. Raitta, U. Karhunen, A. M. Seppälainen, and M. Naukkarinen, “Changes in the electroretinogram and visual evoked potentials during general anaesthesia” ,Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, vol. 211, no. 2, pp. 139-144, 1979.
[26] W. B. Wilson, “Visual-evoked response differentiation of ischemic optic neuritis from the optic neuritis of multiple sclerosis”, American journal of ophthalmology, vol. 86, no. 4, pp. 530-535, 1978.
[27] T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Analysis and visualization of single‐trial event‐related potentials” ,Human brain mapping, vol. 14, no. 3, pp. 166-185, 2001.
[28] S. Morgan, J. Hansen, and S. Hillyard, “Selective attention to stimulus location modulates the steady-state visual evoked potential” ,Proceedings of the National Academy of Sciences, vol. 93, no. 10, pp. 4770-4774, 1996.
[29] M. L. J. Vernon Odom, George W. Weinsein, “Clinical Visual Electrophysiology” ,2006.
[30] P.-L. Lee, J.-C. Hsieh, C.-H. Wu, K.-K. Shyu, S.-S. Chen, T.-C. Yeh, and Y.-T. Wu, “The brain computer interface using flash visual evoked potential and independent component analysis” ,Annals of biomedical engineering, vol. 34, no. 10, pp. 1641-1654, 2006.
[31] W. M. Perlstein, M. A. Cole, M. Larson, K. Kelly, P. Seignourel, and A. Keil, “Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans” ,Neuroscience letters, vol. 342, no. 3, pp. 191-195, 2003.
[32] P.-L. Lee, J.-J. Sie, Y.-J. Liu, C.-H. Wu, M.-H. Lee, C.-H. Shu, P.-H. Li, C.-W. Sun, and K.-K. Shyu, “An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system” ,Annals of Biomedical Engineering, vol. 38, no. 7, pp. 2383-2397, 2010.
[33] P. Martinez, H. Bakardjian, and A. Cichocki, “Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm” ,Computational intelligence and neuroscience, vol. 2007, pp. 13-13, 2007.
[34] H. Spekreijse, O. Estevez, and D. Reits, "Visual evoked potentials and the physiological analysis of visual processes in man" ,Visual evoked potentials in man: New developments, pp. 16-89: Clarendon Press Oxford, 1977.
[35] B. Van Dijk, and H. Spekreijse, “Localization of electric and magnetic sources of brain activity” ,Visual evoked potentials, vol. 5, pp. 58-75, 1990.
[36] P. Krolak‐Salmon, M. A. Hénaff, C. Tallon‐Baudry, B. Yvert, M. Guénot, A. Vighetto, F. Mauguière, and O. Bertrand, “Human lateral geniculate nucleus and visual cortex respond to screen flicker” ,Annals of neurology, vol. 53, no. 1, pp. 73-80, 2003.
[37] R. Srinivasan, E. Fornari, M. G. Knyazeva, R. Meuli, and P. Maeder, “fMRI responses in medial frontal cortex that depend on the temporal frequency of visual input” Experimental brain research, vol. 180, no. 4, pp. 677-691, 2007.
[38] E. R. Ulloa, and J. A. Pineda, “Recognition of point-light biological motion: mu rhythms and mirror neuron activity”, Behavioural brain research, vol. 183, no. 2, pp. 188-194, 2007.
[39] Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao, “A practical VEP-based brain-computer interface”, Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 14, no. 2, pp. 234-240, 2006.
[40] B. Z. Allison, D. J. McFarland, G. Schalk, S. D. Zheng, M. M. Jackson, and J. R. Wolpaw, “Towards an independent brain–computer interface using steady state visual evoked potentials” ,Clinical neurophysiology, vol. 119, no. 2, pp. 399-408, 2008.
[41] M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and implementation of a brain-computer interface with high transfer rates”, Biomedical Engineering, IEEE Transactions on, vol. 49, no. 10, pp. 1181-1186, 2002.
[42] C. Jia, X. Gao, B. Hong, and S. Gao, “Frequency and phase mixed coding in SSVEP-based brain--computer interface” ,Biomedical Engineering, IEEE Transactions on, vol. 58, no. 1, pp. 200-206, 2011.
[43] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller, “EEG-based communication: improved accuracy by response verification”, Rehabilitation Engineering, IEEE Transactions on, vol. 6, no. 3, pp. 326-333, 1998.
[44] P. Yuan, X. Gao, B. Allison, Y. Wang, G. Bin, and S. Gao, “A study of the existing problems of estimating the information transfer rate in online brain–computer interfaces” ,Journal of neural engineering, vol. 10, no. 2, pp. 026014, 2013.
[45] C. S. Herrmann, “Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena”, Experimental brain research, vol. 137, no. 3-4, pp. 346-353, 2001.
[46] M. A. Pastor, J. Artieda, J. Arbizu, M. Valencia, and J. C. Masdeu, “Human cerebral activation during steady-state visual-evoked responses” ,The journal of neuroscience, vol. 23, no. 37, pp. 11621-11627, 2003.
[47] T. Instraments, “MSP430F543x and MSP430F541x Mixed-Signal Microcontrollers Datasheets,” 2014.取自http://www.ti.com/lit/ds/symlink/msp430f5438.pdf
[48] T. Instrument, “ADS1299 Datasheets,” 2012.取自http://www.ti.com/lit/ds/symlink/ads1299.pdf
[49] Hotlife, “HL-MD08R-C2A Bluetooth UART Module UsersManual,” 2014.
取自http://www.hotlife.com.tw/specification/HL-MD08R-C2A_UsersManual_CHT.pdf
[50] Z. Wu, Y. Lai, Y. Xia, D. Wu, and D. Yao, “Stimulator selection in SSVEP-based BCI” ,Medical engineering & physics, vol. 30, no. 8, pp. 1079-1088, 2008.
[51] T. Instrument, “MSP430F15x, MSP430F16x, MSP430F161x MIXED SIGNAL MICROCONTROLLER Datasheets,” 2011.取自http://www.ti.com/lit/ds/symlink/msp430f169.pdf
[52] 謝竣傑,「多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面」,國立中央大學電機工程學系, 碩士論文, 民國98年。
[53] 蒙以正,以MATLAB透視DSP,碁峰資訊,台北市,民國八十八年
[54] M. Puckette, “Low-pass and high-pass filters,” 2006.取自http://msp.ucsd.edu/techniques/v0.11/book-html/node129.html
[55] A. V. Oppenheim, “Butterworth Filters,” MIT OpenCourseWare - Signals and Systems.
[56] Z. Wu, and D. Yao, “Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs” ,Journal of Neural Engineering, vol. 5, no. 1, pp. 36, 2008.
[57 G. R. Müller-Putz, and G. Pfurtscheller, “Control of an electrical prosthesis with an SSVEP-based BCI” ,Biomedical Engineering, IEEE Transactions on, vol. 55, no. 1, pp. 361-364, 2008.
[58 G. R. Müller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller, “Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components” ,Journal of neural engineering, vol. 2, no. 4, pp. 123, 2005.
[59] S. Yamaguchi, H. Tsuchiya, and S. Kobayashi, “Electroencephalographic activity associated with shifts of visuospatial attention” ,Brain, vol. 117, no. 3, pp. 553-562, 1994.
[60] J. Ding, G. Sperling, and R. Srinivasan, “Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency”, Cerebral cortex, vol. 16, no. 7, pp. 1016-1029, 2006.
|