博碩士論文 102521079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.145.102.18
姓名 黃昱禎(Yu-Chen Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用前額穩態視覺誘發電位之腦波人機介面研究
(A Frontal SSVEP-Based Brain Computer Interface)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用相位編碼閃光誘發出前額穩態視覺誘發電位(Steady -State Visual Evoked Potential, SSVEP)作為控制訊號,發展一套四選項腦機介面系統(Brain Computer Interface, BCI)。傳統視覺誘發電位大多量測於大腦皮質之枕葉區,電極之設置較不便且量測期間易受頭髮干擾,影響量測訊號品質。為了不讓頭髮干擾訊號、以及提升使用性,本研究將電極擺放至國際10-20system之FPz位置,提供一種新的穩態視覺腦波人機介面設計。
目前前額穩態視覺誘發電位的相關研究多數在探討其與認知領域的關聯性,並無利用前額穩態視覺誘發電位設計腦波人機介面的相關文獻,所以本研究先探討前額穩態視覺誘發電位設計腦波人機介面的可行性以定出腦波人機介面的閃光頻率以及閃光數目,也從中發現前額穩態視覺誘發電位較容易受眼動、眨眼訊號等其他雜訊之影響訊號品質,藉由配合適當的濾波器設計、配合眼動偵測與疊加平均技術,可成功將受到上述雜訊干擾的區段剔除並且濾除自發性腦波使得相位特徵更加穩定,最後藉由判斷使用者之前額穩態視覺誘發電位相位特徵得到使用者注視的閃光選項,使用者可根據其意念選擇要注視的閃光以輸入指令。
本研究徵召六位受試者,目前發展出的腦波人機介面已經可以達到四個指令的輸入,其平均指令傳輸速度可達7.35 second/command以及91%的準確率。
摘要(英) This study aim to develop a new brain computer interface (BCI), which is based on frontal Steady State Visual Evoked Potential (SSVEP) evoked by phase-tagged flashes in four light emitting diodes (LEDs).Traditional SSVEP-based BCI usually place electrodes on the scalp overlying occipital region. However, scalp around occipital area is usually covered with hair which requires longer setup time than non-hair bearing area and the contact impedance increases with the experiment time. Therefore, in order to achieve a SSVEP-based BCI for convenient use, the measurement of EEG electrode was moved to Fpz position in this study, referring to international EEG 10-20 system.
Though several studies have been discussed about the relation between frontal SSVEP and cognitive functions, to our understanding, rare literatures were found in BCI applications. To investigate the possibility of frontal SSVEP in BCI use, we have first investigated the frequency-preference characteristics of frontal SSVEP and then evaluate the feasible flash number and flashing frequencies for BCI control. We found frontal SSVEP is more easily influenced by motion artifacts, such as eye blinks and eye movements. With proper rejection of artifact-contaminated SSVEP epochs, the frontal SSVEP can be stably obtained through band-pass filtering and epoch-averaging process. In our study, six subjects were recruited to sequentially input a command sequence, consisting of a sequence of four numbers, repeated twice. The accuracy and information transfer rate (mean ± SD) over the six subjects were 91.00 ± 7.68% and 12.36 ± 3.06 bits/min, respectively.
關鍵字(中) ★ 穩態視覺誘發電位
★ 大腦人機介面
★ 前額葉
關鍵字(英) ★ Steady-state Visual Evoked Potential(SSVEP)
★ Brain Computer Interface (BCI)
★ Frontal cortex
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 論文架構 2
第二章 文獻回顧與探討 3
2-1 視覺路徑 3
2-1-1 magnocellular(MC) pathway 4
2-1-2 parvocellular(PC) pathway 4
2-1-3 koniocellular(KC) pathway 4
2-1-4 背流路徑(dorsal stream pathway) 5
2-1-5 腹流路徑(ventral stream pathway) 5
2-2 視覺誘發電位 6
2-2-1 圖形視覺誘發電位 7
2-2-2 瞬時閃光誘發電位 9
2-2-3 穩態視覺誘發電位 10
2-3 穩態視覺誘發電位之大腦人機介面系統 11
2-4 前額葉之穩態視覺誘發電位 14
第三章 系統架構與訊號處理方法 15
3-1 系統架構 15
3-1-1 腦波機 15
3-1-2 刺激光源裝置設計 18
3-1-3 圖形化實驗者操作介面 20
3-2 訊號處理方法 21
3-2-1 相位編碼閃光序列設計 21
3-2-2 數位濾波器 22
3-2-3 疊加平均技術與去除眼動訊號 26
3-2-4 訊號處理流程 27
3-2-5 相位角分析方法 29
第四章 實驗設計與結果 30
4-1 前額閃光頻率之選擇 30
4-1-1 實驗設計 30
4-1-2 實驗結果與討論 31
4-2 前額SSVEP相位編碼可行性之探討 33
4-2-1 實驗設計 33
4-2-2 實驗結果與討論 34
4-3 前額SSVEP-BCI 使用結果 37
4-3-1 實驗設計 37
4-3-2 實驗結果與討論 39
第五章 結論與未來展望 41
參考文獻 42
參考文獻 [1] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan, “Brain-computer interface technology: a review of the first international meeting”, IEEE transactions on rehabilitation engineering, vol. 8, no. 2, pp. 164-173, 2000.
[2] J.-J. Vidal, “Toward direct brain-computer communication” , Annual review of Biophysics and Bioengineering, vol. 2, no. 1, pp. 157-180, 1973.
[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan,“Brain–computer interfaces for communication and control”, Clinical neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.
[4] J. A. Wilson, E. Felton, P. C. Garell, G. Schalk, and J. C. Williams, “ECoG factors underlying multimodal control of a brain-computer interface” ,Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 14, no. 2, pp. 246-250, 2006.
[5] I. Volosyak, D. Valbuena, T. Malechka, J. Peuscher, and A. Gräser, “Brain–computer interface using water-based electrodes”, Journal of neural engineering, vol. 7, no. 6, pp. 066007, 2010.
[6] V. Mihajlovic, G. Garcia Molina, and J. Peuscher, "To what extent can dry and water-based EEG electrodes replace conductive gel ones?: A Steady State Visual Evoked Potential Brain-computer Interface Case Study."
[7] C. Guger, G. Krausz, B. Z. Allison, and G. Edlinger, “Comparison of dry and gel based electrodes for P300 brain–computer interfaces” , Frontiers in neuroscience, vol. 6, 2012.
[8] "Comparison of consumer brain-computer interfaces," 取自https://en.wikipedia.org/wiki/Comparison_of_consumer_brain%E2%80%93computer_interfaces.
[9] R. B. Silberstein, and A. Pipingas, “Steady-state visually evoked potential topography during the Wisconsin card sorting test”, Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol. 96, no. 1, pp. 24-35, 1995.
[10] R. B. Silberstein, P. L. Nunez, A. Pipingas, P. Harris, and F. Danieli, “Steady state visually evoked potential (SSVEP) topography in a graded working memory task”, International Journal of Psychophysiology, vol. 42, no. 2, pp. 219-232, 2001.
[11] R. B. Silberstein, P. G. Harris, G. A. Nield, and A. Pipingas, “Frontal steady-state potential changes predict long-term recognition memory performance” ,International Journal of Psychophysiology, vol. 39, no. 1, pp. 79-85, 2000.
[12] S. Moratti, A. Keil, and M. Stolarova, “Motivated attention in emotional picture processing is reflected by activity modulation in cortical attention networks”, Neuroimage, vol. 21, no. 3, pp. 954-964, 2004.
[13] A. Kemp, M. Gray, P. Eide, R. Silberstein, and P. Nathan, “Steady-state visually evoked potential topography during processing of emotional valence in healthy subjects” ,NeuroImage, vol. 17, no. 4, pp. 1684-1692, 2002.
[14] A. Keil, T. Gruber, M. M. Müller, S. Moratti, M. Stolarova, M. M. Bradley, and P. J. Lang, “Early modulation of visual perception by emotional arousal: evidence from steady-state visual evoked brain potentials” ,Cognitive, Affective, & Behavioral Neuroscience, vol. 3, no. 3, pp. 195-206, 2003.
[15] F.-B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, “Steady-state visually evoked potentials: focus on essential paradigms and future perspectives” ,Progress in neurobiology, vol. 90, no. 4, pp. 418-438, 2010.
[16] J. J. Nassi, and E. M. Callaway, “Parallel processing strategies of the primate visual system” ,Nature Reviews Neuroscience, vol. 10, no. 5, pp. 360-372, 2009.
[17] H. Kolb, “Midget pathways of the primate retina underlie resolution and red green color opponency ”, 2012.取自http://webvision.med.utah.edu/book/part-iii-retinal-circuits/midget-pathways-of-the-primate-retina-underly-resolution/
[18] J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P. Tormene, and G. E. Holder, “Visual evoked potentials standard (2004)” ,Documenta ophthalmologica, vol. 108, no. 2, pp. 115-123, 2004.
[19] P. R. Kennedy, R. A. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe, “Direct control of a computer from the human central nervous system”, Rehabilitation Engineering, IEEE Transactions on, vol. 8, no. 2, pp. 198-202, 2000.
[20] S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, “A direct brain interface based on event-related potentials” ,IEEE transactions on rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, vol. 8, no. 2, pp. 180-185, 2000.
[21] E. E. Sutter, “The Brain Response Interface - Communication through Visually-Induced Electrical Brain Responses” ,Journal of Microcomputer Applications, vol. 15, no. 1, pp. 31-45, Jan, 1992.
[22] P. Cilliers, and A. Van Der Kouwe, "A VEP-based computer interface for C2-ouadriplegics." pp. 1263-1263.
[23] R. Oostenveld, and P. Praamstra, “The five percent electrode system for high-resolution EEG and ERP measurements” ,Clinical neurophysiology, vol. 112, no. 4, pp. 713-719, 2001.
[24] S. P. Kelly, E. C. Lalor, R. B. Reilly, and J. J. Foxe, “Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication” ,Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 13, no. 2, pp. 172-178, 2005.
[25] C. Raitta, U. Karhunen, A. M. Seppälainen, and M. Naukkarinen, “Changes in the electroretinogram and visual evoked potentials during general anaesthesia” ,Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, vol. 211, no. 2, pp. 139-144, 1979.
[26] W. B. Wilson, “Visual-evoked response differentiation of ischemic optic neuritis from the optic neuritis of multiple sclerosis”, American journal of ophthalmology, vol. 86, no. 4, pp. 530-535, 1978.
[27] T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Analysis and visualization of single‐trial event‐related potentials” ,Human brain mapping, vol. 14, no. 3, pp. 166-185, 2001.
[28] S. Morgan, J. Hansen, and S. Hillyard, “Selective attention to stimulus location modulates the steady-state visual evoked potential” ,Proceedings of the National Academy of Sciences, vol. 93, no. 10, pp. 4770-4774, 1996.
[29] M. L. J. Vernon Odom, George W. Weinsein, “Clinical Visual Electrophysiology” ,2006.
[30] P.-L. Lee, J.-C. Hsieh, C.-H. Wu, K.-K. Shyu, S.-S. Chen, T.-C. Yeh, and Y.-T. Wu, “The brain computer interface using flash visual evoked potential and independent component analysis” ,Annals of biomedical engineering, vol. 34, no. 10, pp. 1641-1654, 2006.
[31] W. M. Perlstein, M. A. Cole, M. Larson, K. Kelly, P. Seignourel, and A. Keil, “Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans” ,Neuroscience letters, vol. 342, no. 3, pp. 191-195, 2003.
[32] P.-L. Lee, J.-J. Sie, Y.-J. Liu, C.-H. Wu, M.-H. Lee, C.-H. Shu, P.-H. Li, C.-W. Sun, and K.-K. Shyu, “An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system” ,Annals of Biomedical Engineering, vol. 38, no. 7, pp. 2383-2397, 2010.
[33] P. Martinez, H. Bakardjian, and A. Cichocki, “Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm” ,Computational intelligence and neuroscience, vol. 2007, pp. 13-13, 2007.
[34] H. Spekreijse, O. Estevez, and D. Reits, "Visual evoked potentials and the physiological analysis of visual processes in man" ,Visual evoked potentials in man: New developments, pp. 16-89: Clarendon Press Oxford, 1977.
[35] B. Van Dijk, and H. Spekreijse, “Localization of electric and magnetic sources of brain activity” ,Visual evoked potentials, vol. 5, pp. 58-75, 1990.
[36] P. Krolak‐Salmon, M. A. Hénaff, C. Tallon‐Baudry, B. Yvert, M. Guénot, A. Vighetto, F. Mauguière, and O. Bertrand, “Human lateral geniculate nucleus and visual cortex respond to screen flicker” ,Annals of neurology, vol. 53, no. 1, pp. 73-80, 2003.
[37] R. Srinivasan, E. Fornari, M. G. Knyazeva, R. Meuli, and P. Maeder, “fMRI responses in medial frontal cortex that depend on the temporal frequency of visual input” Experimental brain research, vol. 180, no. 4, pp. 677-691, 2007.
[38] E. R. Ulloa, and J. A. Pineda, “Recognition of point-light biological motion: mu rhythms and mirror neuron activity”, Behavioural brain research, vol. 183, no. 2, pp. 188-194, 2007.
[39] Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao, “A practical VEP-based brain-computer interface”, Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 14, no. 2, pp. 234-240, 2006.
[40] B. Z. Allison, D. J. McFarland, G. Schalk, S. D. Zheng, M. M. Jackson, and J. R. Wolpaw, “Towards an independent brain–computer interface using steady state visual evoked potentials” ,Clinical neurophysiology, vol. 119, no. 2, pp. 399-408, 2008.
[41] M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and implementation of a brain-computer interface with high transfer rates”, Biomedical Engineering, IEEE Transactions on, vol. 49, no. 10, pp. 1181-1186, 2002.
[42] C. Jia, X. Gao, B. Hong, and S. Gao, “Frequency and phase mixed coding in SSVEP-based brain--computer interface” ,Biomedical Engineering, IEEE Transactions on, vol. 58, no. 1, pp. 200-206, 2011.
[43] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller, “EEG-based communication: improved accuracy by response verification”, Rehabilitation Engineering, IEEE Transactions on, vol. 6, no. 3, pp. 326-333, 1998.
[44] P. Yuan, X. Gao, B. Allison, Y. Wang, G. Bin, and S. Gao, “A study of the existing problems of estimating the information transfer rate in online brain–computer interfaces” ,Journal of neural engineering, vol. 10, no. 2, pp. 026014, 2013.
[45] C. S. Herrmann, “Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena”, Experimental brain research, vol. 137, no. 3-4, pp. 346-353, 2001.
[46] M. A. Pastor, J. Artieda, J. Arbizu, M. Valencia, and J. C. Masdeu, “Human cerebral activation during steady-state visual-evoked responses” ,The journal of neuroscience, vol. 23, no. 37, pp. 11621-11627, 2003.
[47] T. Instraments, “MSP430F543x and MSP430F541x Mixed-Signal Microcontrollers Datasheets,” 2014.取自http://www.ti.com/lit/ds/symlink/msp430f5438.pdf
[48] T. Instrument, “ADS1299 Datasheets,” 2012.取自http://www.ti.com/lit/ds/symlink/ads1299.pdf
[49] Hotlife, “HL-MD08R-C2A Bluetooth UART Module UsersManual,” 2014.
取自http://www.hotlife.com.tw/specification/HL-MD08R-C2A_UsersManual_CHT.pdf
[50] Z. Wu, Y. Lai, Y. Xia, D. Wu, and D. Yao, “Stimulator selection in SSVEP-based BCI” ,Medical engineering & physics, vol. 30, no. 8, pp. 1079-1088, 2008.
[51] T. Instrument, “MSP430F15x, MSP430F16x, MSP430F161x MIXED SIGNAL MICROCONTROLLER Datasheets,” 2011.取自http://www.ti.com/lit/ds/symlink/msp430f169.pdf
[52] 謝竣傑,「多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面」,國立中央大學電機工程學系, 碩士論文, 民國98年。
[53] 蒙以正,以MATLAB透視DSP,碁峰資訊,台北市,民國八十八年
[54] M. Puckette, “Low-pass and high-pass filters,” 2006.取自http://msp.ucsd.edu/techniques/v0.11/book-html/node129.html
[55] A. V. Oppenheim, “Butterworth Filters,” MIT OpenCourseWare - Signals and Systems.
[56] Z. Wu, and D. Yao, “Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs” ,Journal of Neural Engineering, vol. 5, no. 1, pp. 36, 2008.
[57 G. R. Müller-Putz, and G. Pfurtscheller, “Control of an electrical prosthesis with an SSVEP-based BCI” ,Biomedical Engineering, IEEE Transactions on, vol. 55, no. 1, pp. 361-364, 2008.
[58 G. R. Müller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller, “Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components” ,Journal of neural engineering, vol. 2, no. 4, pp. 123, 2005.
[59] S. Yamaguchi, H. Tsuchiya, and S. Kobayashi, “Electroencephalographic activity associated with shifts of visuospatial attention” ,Brain, vol. 117, no. 3, pp. 553-562, 1994.
[60] J. Ding, G. Sperling, and R. Srinivasan, “Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency”, Cerebral cortex, vol. 16, no. 7, pp. 1016-1029, 2006.
指導教授 李柏磊 審核日期 2015-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明