博碩士論文 102521098 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.144.31.64
姓名 戴瑋佑(Wei-you Dai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用磁耦合變壓器技術之雙頻帶金氧半導體壓控振盪器暨5 GHz壓控振盪器與除頻器整合電路
(CMOS Voltage Controlled Oscillator with Magnetically Coupled Transformer Switch for Dual-band Application and 5 GHz VCO and Divider Integrated Circuit)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文利用tsmcTM 0.18 m製程技術來進行本地振盪源電路的相關設計;本論文探討現今雙頻操作振盪器的機制,設計運用磁耦合變壓器切換技術達到雙頻操作的壓控振盪器,結合不同的架構達到低功耗、低相位雜訊的目標,同時以實作的量測結果,驗證電路理論設計之正確性。其設計內容包含三個電路,內容如下所述:
一、應用磁耦合變壓器切換技術之寬頻壓控振盪器之研製
利用磁耦合變壓器切換技術,可以縮減面積以及讓調頻的頻率逐步遞增,電路的調頻範圍可以從5.55 GHz調到10.26 GHz,相位雜訊在偏移1 MHz處為-105.71 dBc/Hz,電路功耗為3.2 mW,電路的優化指標(FoMT)為-192.18;晶片面積為0.752 × 0.8 mm2。
二、雙模態考畢茲電流再利用壓控振盪器之研製
本電路結合磁耦合變壓器切換的技術以及考畢茲、電流再利用的架構,加入源極退化電感,以增加可調頻寬以及簡化直流偏壓設計。兩個頻段的可調頻率範圍分別為5.24 GHz – 5.48 GHz以及10.4 GHz – 11.55 GHz,功耗為1.95 mW,相位雜訊在偏移1 MHz的地方為-114.9以及 -105.35 dBc/Hz,電路的優化指標在兩個頻段分別為-185.1以及-183.38;整體的晶片面積為0.842 × 0.732 mm2。
三、5 GHz壓控振盪器暨除頻器整合電路
本電路包含一顆寬頻與低相位雜訊的壓控振盪器以及改良後的電流模態除頻器;壓控振盪器的可調頻率範圍為4.68 GHz – 6.19 GHz,對應的除頻範圍為2.34 GHz – 3.1 GHz,直流功耗為2.52 與3.75 mW;相位雜訊在偏移1 MHz的地方為-117.1 以及-122.3 dBc/Hz。整體的晶片面積為0.73 × 1.16 mm2。
摘要(英) As more increasing demands for low-cost in wireless communication system, multi-standards circuits are proposed to support the requirements. Therefore, RF transceivers become more complex and consume more power to satisfy the different wireless systems, which means that various kinds of local sources are needed meanwhile. Since voltage controlled oscillator (VCO) is an important sub-circuit in phase locked loop (PLL), this thesis includes five parts, which are motivation, two VCOs for dual-band application, integrated circuits for 5GHz and future work.
Chapter 1 illustrates the motivation of the system standards. And chapter 2 introduces the basic theory of transformer and implements a transformer-switch based VCO for dual-band and wideband application fabricated in 0.18-μm CMOS technology. This design uses the transformer not only for reducing the chip size, but also enabling the center frequency tunable monotonically. By setting the different bias, the circuit can be operated as dual-band or wideband. The measured tunable oscillation frequency is from 5.55 GHz to 10.26 GHz. The power consumption is 3.2 mW and the phase noise is -105.71 dBc/Hz at 1-MHz offset respectively. The obtained FoMT is -192.18. The chip area, including RF signal pads and DC bias pads, is 0.752 × 0.8 mm2.
Chapter 3 presents a Colpitts with current-reused technology. The Colpitts current-reused VCO fabricated in 0.18-μm CMOS technology with magnetically coupled switch. The design procedure and measurements are described in this chapter. This circuit adopts the source degeneration inductor to extend the tuning range and eases the design of DC bias simultaneously. The measured center frequencies for each sub-band are 5.36 GHz and 10.95 GHz with tunable from 5.24 GHz to 5.48 GHz and 10.4 GHz to 11.5 GHz. The phase noise are -114.9 and -105.35 dBc/Hz, respectively. The total power consumption is 1.95 mW. The FoM are -185.1 and -183.38, respectively. The chip area, including RF signal pads and DC bias pads, is 0.842 × 0.732 mm2.
Chapter 4 then reviews the conventional design of frequency dividers. A VCO is integrated with frequency divider in this chapter. The oscillator can be tuned from 4.68 GHz to 6.19 GHz, the corresponding output frequency of divider is 2.34 GHz to 3.1 GHz. The power consumptions are 2.52 and 3.75 mW. The phase noise are -117.1 and -122.3 dBc/Hz respectively. The chip area, including RF signal pads and DC bias pads, is 0.73 × 1.16 mm2.
Chapter 5 concludes the aforementioned three designs and brings up the future work in the end of the thesis.
關鍵字(中) ★ 壓控振盪器
★ 雙頻
★ 除頻器
關鍵字(英) ★ VCO
★ Dual band
★ divider
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節敘述 2
第二章 應用磁耦合切換之雙頻壓控振盪器 3
2-1 磁耦合變壓器之簡介 3
2-2 電路架構與分析 8
2-2-1 磁耦合切換技術 8
2-2-2 應用磁耦合變壓器切換技術之寬頻壓控振盪器設計 11
2-2-3 量測與模擬結果 18
2-2-4 結果比較與討論 28
第三章 雙模態考畢茲電流再利用壓控振盪器 34
3-1 電路架構與分析 34
3-1-1 考畢茲架構簡介 34
3-1-2 電流再利用技術簡介 36
3-1-3 雙模態考畢茲電流再利用壓控振盪器設計 38
3-1-4 量測與模擬結果 45
3-1-5 結果比較與討論 55
第四章 5 GHz壓控振盪器暨除頻器整合電路 61
4-1 除頻器介紹 61
4-2 電路架構與分析 64
4-2-1 除頻器設計 64
4-2-2 5 GHz壓控振盪器設計 68
4-2-3 5 GHz壓控振盪器暨除頻器設計 70
4-2-4 量測與模擬結果 72
4-2-5 結果比較與討論 86
第五章 結論 92
5-1 結論 92
5-2 未來方向 93
參考文獻 94
參考文獻 [1] H. Hashemi, “Integrated Concurrent multi-band radios and multiple-antenna systems,” Ph.D. dissertation, California Inst. Technol., Pasadena, 2003.
[2] Z. Safarian and H. Hashemi, “Wideband multi-mode CMOS VCO design using coupled inductors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 8, pp. 1830–1843, Aug. 2009.
[3] C.-I. Chien, Y.-C. Wang, K.-H. Chien, and H.-K. Chiou, “A low power, wide bandwidth k-band transformer feedback low noise amplifier with current-reused topology, ” Microwave Conference (APMC), 2014 Asia-Pacific , vol., no., pp.417,419, 4-7 Nov. 2014
[4] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
[5] H.-Y. Chang and Y.-T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46–59, Jan. 2012.
[6] J. R. Long, “Monolithic transformers for silicon RFIC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
[7] X. Yu, A. El-Gouhary, N.M., Neihart “ A Transformer-Based Dual-Coupled Triple-Mode CMOS LC-VCO, ” IEEE Trans. Microw. Theory Tech., vol.62, no.9, pp.2059,2070, Sep. 2014
[8] J. Yin and H. C. Luong, “A 57.5-to-90.1 GHz magnetically-tuned multi-mode CMOS VCO,” in Proc. CICC, 2012, pp. 1–4.


[9] A.W.L. Ng and H.-C. Luong, “A 1-V 17-GHz 5-mW CMOS Quadrature VCO Based on Transformer Coupling, ” IEEE J. Solid-State Circuits, vol.42, no.9, pp.1933,1941, Sep. 2007
[10] S. J. Yun, H. D. Lee, K. D. Kim, S. G. Lee, and J. K. Kwon, “A wide-tuning dual-band transformer-based complementary VCO,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 340–342, Jun. 2010.
[11] C.-H. Ko, A. Tran and G. Rebeiz, "Tunable 500–1200-MHz Dual-Band and Wide Bandwidth Notch Filters Using RF Transformers," IEEE Trans. Microw. Theory Tech., vol.63, no.6, pp.1854,1862, June 2015
[12] H.-K. Chen, T. Wang and S.-S. Lu, “A Millimeter-Wave CMOS Triple-Band Phase-Locked Loop With A Multimode LC-Based ILFD, ” IEEE Trans. Microw. Theory Tech., vol.59, no.5, pp.1327,1338, May 2011
[13] C.-H. Li, C.-Y. Hsu and C.-N. Kuo, “Low power 2.4-GHz receiver front-end using resoantor coupling technique, ” Circuits and Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium on , vol., no., pp.1,4, 7-10 Aug. 2011
[14] J. Kim, J. Shin, S. Kim, and H. Shin, “A wide-band CMOS LC VCO with linearized coarse tuning characteristic,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, pp. 399–403, May 2008.
[15] A. Li, and H.-C. Luong, “A reconfigurable 4.7–6.6GHz and 8.5–10.7GHz concurrent and dual-band oscillator in 65nm CMOS, ” Proc. IEEE Radio Frequency Integrated Circuits Symp.,2012, vol., no., pp.523,526, 17-19 June 2012
[16] M. Demirkan, S. P. Bruss, and R. R. Spencer, “11.8 GHz CMOS VCO with 62% tuning range using switched coupled inductors,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2007, pp. 401–404.

[17] S.-L. Jang, Y.-K. Wu, C.-C. Liu, and J.-F. Huang, “A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 816–818, Dec. 2009.
[18] G. Li, L. Liu, Y. Tang, and E. Afshari, “A low-phase-noise wide-tuningrange oscillator based on resonant mode switching,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1295–1308, Jun. 2012.
[19] J. Borremans, A. Bevilacqua, S. Bronckers, M. Dehan, M. Kuijk, P. Wambacq, and J. Craninckx, “A compact wideband front-end using a single-inductor dual-band VCO in 90 nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2693–2705, 2008.
[20] L.-H. Lu, H.-H. Hsieh, and Y.-T. Liao, “A wide tuning-range CMOS VCO with a differential tunable active inductor,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3462–3468, Sep. 2006.
[21] J. Borremans, S. Bronckers, M. Kuijk, P. Wambacq, and G. Craninckx, “A single-inductor, dual-band VCO in a 0.06 mm2 , 5.6 GHz multiband front-end in 90 nm digital CMOS,” in 2008 IEEE Int. Solid-State Circuits (ISSCC) Dig. Tech. Papers, Feb. 3–7, 2008, pp. 324–325.
[22] T. Nguyen and J.-W. Lee, “Ultralow-power ku-band dual-feedback armstrong VCO with a wide tuning range,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 7, pp. 394–398, Jul. 2012.
[23] T.-P. Wang, “A K-band low-power Colpitts VCO with voltage-to-current positive-feedback network in 0.18 µm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 218–220, Apr. 2011
[24] S. Yoo, J. Kim, and J. Choi, “A 2–8 GHz wideband dually frequency-tuned ring-VCO with a scalable Kvco,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 11, pp. 602–604, Nov. 2013.
[25] H. Yoon, Y. Lee, J. Kim and J. Choi, “A Wideband Dual-Mode LC -VCO With a Switchable Gate-Biased Active Core, ” IEEE Trans. Circuits Syst. II, Exp. Briefs., IEEE Transactions on , vol.61, no.5, pp.289,293, May 2014
[26] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, U.K. : Cambridge Univ. Press.2004
[27] C. A. Lin, J. L. Kuo, K. Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 75–78.
[28] S. J. Yun, S. B. Shin, H. C. Choi, and S. G. Lee, “A 1 mW current reuse CMOS differential LC-VCO with low phase noise,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2005, pp. 540–541.
[29] S.-L. Liu, K.-H. Chen, and A. Chin, “A dual-resonant mode 10/22-GHz VCO with a novel inductive switching approach,” IEEE Trans. Microw. Theory Tech., vol. 60, pp. 2165–2177, Jul. 2012.
[30] S. Rong and H. C. Luong, “Analysis and design of transformer-based dual-band VCO for software-defined radios,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 449–462, Mar. 2012.
[31] S.-L. Jang, S. Jain, “Dual C- and S-Band CMOS VCO Using the Shunt Varactor Switch, ” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, pp.1,1
[32] L. Wu, A. W. L. Ng, L. L. K. Leung, and H. C. Luong, “A 24-GHz and 60-GHz dual-band standing-wave VCO in 0.13 m CMOS process,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., May 2010, pp. 145–148.
[33] Y. S. Lin, C. H. Wu, C. L. Lu, and Y. H. Wang, “A divide-by-four transformer-coupled regenerative frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 4, pp. 260–262, Apr. 2014.
[34] 簡偉仁, “Implementations of K band Low Power and Low Phase Noise Voltage
Controlled Oscillator and Ku band Dual-mode Injection Locking Frequency Divider
,"碩士論文,中央大學.2009
[35] 周梓妘, “Implementation on Low Power CMOS Voltage Controlled Oscillator Using Magnetically Coupled Transformer for K-band Application,”碩士論文,中央大學2014 
[36] H.Hsieh and L. Lu, "A V-Band CMOS VCO With an Admittance-Transforming
Cross-Coupled Pair," IEEE J. Solid-State Circuits, vol.44, no.6, pp.1689–1696, Jun.
2009
指導教授 邱煥凱(Hwann-kaeo Chiou) 審核日期 2015-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明