以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:38 、訪客IP:18.218.99.80
姓名 梁瀅龍(Ying-Lung Liang) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 多晶矽和金屬閘極於二維金氧半場效電晶體模擬比較
(Comparison Between Polysilicon and Metal Gate in 2D MOSFET Simulation)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本篇論文中,我們將帕松方程式及電流連續方程式,利用等效電路的方式來設計出二維網格數值元件模擬器,元件的模擬就變成了電路的模擬,不但可以用電路模擬器來做元件模擬,而且可以和一般電路結合,形成混階模擬,接著討論多晶矽閘極和金屬閘極的差異和優缺點,並利用多晶矽閘極模擬的結果和金屬閘極來做比較,最後,我們將討論的主題是用非白努力的電流表示方法,並比較非白努力方程式與傳統白努力方程式上的差異。 摘要(英) In this thesis, we use Poisson’s equation and continuity equations to design an equivalent circuit model for 2-D device simulation. The device simulation will be transformed into the circuit simulation. The simulation will become a mixed-level device and circuit simulation. We discuss the advantages and disadvantages between poly-Si gate and metal gate. And the simulation results of poly-Si gate will be compared with those of metal gate. Finally, the subject to be discussed is the non-Bernoulli equation for current expression. We will compare the Bernoulli method with non-Bernoulli method. 關鍵字(中) ★ 矩形網格
★ 元件模擬
★ 金氧半場效電晶體關鍵字(英) ★ rectangular mesh
★ device simulation
★ MOSFET論文目次 摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 VI
第一章 簡介 1
第二章 二維元件模擬架構 2
2-1 半導體物理特性及二維矩形網格等效電路 2
2-2 牛頓拉夫森於模擬器數值運算 6
第三章 多晶矽閘極於MOSFET模擬及特性分析 9
3-1 多晶矽閘極模型 9
3-2 臨界電壓下反轉層厚度的模擬及探討 11
3-3 表面電荷密度隨表面電位變化之模擬與探討 19
3-4 汲極電壓對通道內各點的單位反轉層電荷影響探討 24
第四章 多晶矽和金屬閘極之模型及模擬比較與探討 28
4-1 多晶矽和金屬閘極於元件電路混階模型與模擬 28
4-2 多晶矽和金屬閘極於MOSFET模擬比較 33
4-3 白努力和非白努力方程式對於元件上模擬影響 36
第五章 結論 44
參考文獻 45
參考文獻 [1] M. A. Mahmud and S. Subrina, “A Two Dimensional Analytical Model of Drain to Source Current and Subthreshold Slope of a Triple Material Double Gate MOSFET,” IEEE ICECE Proc., Dec. 2014.
[2] G. M. Zhang, Y. K. Su, H. Y. Hsin, and Y. T. Tsai, “Double gate junctionless MOSFET simulation and comparison with analytical model,” IEEE RSM Proc., Sep. 2013.
[3] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson solution of Poisson′s equation in a pn diode,” International Journal of Electrical Engineering Education, Vol. 44 Issue 1, p23, Jan. 2007.
[4] M. J. Zeng, ”Development of Triangular element and its applications to arbitrary 2D Semiconductor device,” M. S. Thesis, Institute of EE, National Central University, Taiwan, R.O.C, 2014.
[5] H. Craig Casey, Jr., Devices for integrated circuits : silicon and III-V compound semiconductor, John Wiley, Chapter 7, 1999.
[6] D. A. Neamen, Semiconductor physics and devices: Basic Principles, 4th ed., McGraw-Hill, Chapter 10, 2012.
[7] S. M. Sze and Kwok K Ng, Physics of semiconductor devices, 3rd ed., Wiley-Interscience, Chapter 6, 2007.
[8] C. C. Chang, S. J. Li, and Y. T. Tsai, “Two-dimensional Mixed-level Device and Circuit Simulation using a simple Band Matrix Solver,” in EDMS 2005, Kaohsiung, Taiwan, 2005.
[9] S. J. Li, “Semiconductor Device Simulation with Equivalent Circuit Model including Quantum Effect,” Ph.D. dissertation, Institute of EE, National Central University, Taiwan, R.O.C, 2007.
[10] C. W. Tsai, ”Surface Recombination Current and non-Bernoulli Equation for 2-D Semiconductor Device Simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, R.O.C, 2009.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2015-6-30 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare