參考文獻 |
[1] D.M. Rowe, Ph.D., D.Sc., “Thermoelectric Handbook ( Macro To Nano )”, CRC, New York (2006).
[2] A.F. Ioffe, “Semiconductor thermoelements and Thermoelectric cooling”, Infosearch Limited, London (1957).
[3] H.J. Goldsmid, b. Sc. and R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. 5, 368 (1954).
[4] H. J. Goldsmid, A. R. Sheard, and D. A. Wright, “The performance of bismuth telluride thermojunctions”, Br. J. Appl. Phys. 9, 365 (1958).
[5] Arun Majumdar, “Thermoelectricity in Semiconductor Nanostructures” Science 303, 777-778 (2004).
[6] Snyder, G. Jeffrey, and Eric S. Toberer. "Complex thermoelectric materials" Nature materials 7, 105 – 114 (2008).
[7] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 47, 12727 (1993).
[8] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B 47, 16631 (1993).
[9] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 53, R10493 (1996).
[10] T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science 297, 2229-2232 (2002).
[11] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O′Quinn “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597-602 (2001).
[12] Yu-Ming Lin and M. S. Dresselhaus, “Thermoelectric properties of superlattice nanowires”, Phys. Rev. B 68, 075304 (2003).
[13] T. E. Humphrey and H. Linke, “Reversible Thermoelectric Nanomaterials”, Phys. Rev. Lett. 94, 096601 (2005).
[14] J. Cai and G. D. Mahan, “Transport properties of quantum dot arrays”, Phys. Rev. B 78, 035115 (2008).
[15] P. M. Wu, J. Gooth, X. Zianni, S. F. Svensson, J. G. Gluschke, et al. “Large Thermoelectric Power Factor Enhancement Observed in InAs Nanowires”, Nano Letters 13, 4080–4086, 2013.
[16] H. Nakamura, T. Ohto, T. Ishida and Y. Asai, “Thermoelectric Efficiency of Organometallic Complex Wires via Quantum Resonance Effect and Long-Range Electric Transport Property”, J. Am. Chem. Soc., 513 , 16545–16552 (2013).
[17] D. M. -T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[18] David M.-T. Kuo, "Thermoelectric Effects of Molecular Quantum Dot Junctions with Strong Electron Phonon Interactions", Jpn. J. Appl. Phys. 49, 095205 (2010).
[19] M. Tsaousidou and G. P. Triberis “Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency”, J. Phys.: Condens. Matter 22, 355304 (2010).
[20] R. Yang and G. Chen, “Thermal conductivity modeling of periodic two-dimensional nanocomposites”, Phys. Rev. B 69, 195316 (2004).
[21] T. Markussen, A.-P. Jauho, and M. Brandbyge, “Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics”, Phys. Rev. Lett. 103, 055502 (2009).
[22] Y. Meir, N.S. Wingreen and P.A. Lee, “Low-temperature transport through a quantum dot: The Anderson model out of equilibrium”, Phys. Rev. Lett. 70, 2601 (1993).
[23] D. M.T. Kuo, “Effect of interlevel coulomb interaction on the tunneling current through a single quantum dot”, Physica E 27, 355-361 (2005).
[24] D. M. T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. 99, 086803 (2007).
[25] D. M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000).
[26] David M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
[27] K. Schwab, E. A. Henriksen, J. M. Worlock and M. L. Roukes, “Measurement of the quantum of thermal conductance”, Nature 404, 974-977 (2000).
[28]曾彥鈞,“低維度系統之熱電特性”,博士論文,國立中央大學,民國103年。
[29] Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath. “Silicon nanowires as efficient thermoelectricmaterials” ,Nature 451, 168 (2004). |