參考文獻 |
[1] D.-W. Lee, J.-M. Lim, J. Sunwoo, I.-Y. Cho, and C.-H. Lee, “Actual remote control: a universal remote control using hand motions on a virtual menu,” IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 1439–1446, Aug. 2009.
[2] A. Thayananthan, “Template-based pose estimation and tracking of 3d hand motion,” 2005.
[3] H. Heo, E. Lee, K. Park, C. Kim, and M. Whang, “A realistic game system using multi-modal user interfaces,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1364–1372, Aug. 2010.
[4] X. Chen and M. Koskela, “Using appearance-based hand features for dynamic RGB-D gesture recognition,” 2014 22nd Int. Conf. Pattern Recognit., pp. 411–416, Aug. 2014.
[5] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture recognition using wireless signals,” in Proceedings of the 19th annual international conference on Mobile computing & networking - MobiCom ’13, 2013, pp. 27.
[6] R. Aoki, M. Ihara, a. Maeda, M. Kobayashi, and S. Kagami, “Expanding kinds of gestures for hierarchical menu selection by unicursal gesture interface,” IEEE Trans. Consum. Electron., vol. 57, no. 2, pp. 731–737, May 2011.
[7] Y. Han, “A low-cost visual motion data glove as an input device to interpret human hand gestures,” IEEE Trans. Consum. Electron., vol. 56, no. 2, pp. 501–509, May 2010.
[8] B. Ionescu, V. Suse, C. Gadea, B. Solomon, D. Ionescu, S. Islam, and M. Cordea, “Using a NIR camera for car gesture control,” vol. 12, no. 3, pp. 520–523, 2014.
[9] C. I. Penaloza, Y. Mae, F. F. Cuellar, M. Kojima, and T. Arai, “Brain machine interface system automation considering user preferences and error perception feedback,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 4, pp. 1275–1281, Oct. 2014.
[10] L. De Miranda, H. Hornung, and M. C. Baranauskas, “Adjustable interactive rings for iDTV,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1988–1996, Aug. 2010.
[11] G. Pavlakos, S. Theodorakis, V. Pitsikalis, A. Katsamanis, and P. Maragos, “Kinect-based multimodal gesture recognition using a two-pass fusion scheme,” in 2014 IEEE International Conference on Image Processing (ICIP), 2014, pp. 1495–1499.
[12] J. Suarez and R. R. Murphy, “Hand gesture recognition with depth images: A review,” 2012 IEEE RO-MAN 21st IEEE Int. Symp. Robot Hum. Interact. Commun., pp. 411–417, Sep. 2012.
[13] C. Wolf, G. W. Taylor, and F. Nebout, “Multi-scale deep learning for gesture detection and localization,” 2014 European Conference Computer Vision Workshop (ECCV Work.)., pp. 474-490, 2014.
[14] J. Alon, V. Athitsos, Q. Yuan, S. Member, S. Sclaroff, and S. Member, “A unified framework for gesture recognition and spatiotemporal gesture segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence., vol. 31, no. 9, pp. 1685–1699, 2009.
[15] V. Frati and D. Prattichizzo, “Using Kinect for hand tracking and rendering in wearable haptics,” 2011 IEEE World Haptics Conf., pp. 317–321, Jun. 2011.
[16] Y. Li, “Hand gesture recognition using kinect,” Softw. Eng. Serv. Sci. (ICSESS), pp. 196–199, 2012.
[17] D. Uebersax, J. Gall, M. Van den Bergh, and L. Van Gool, “Real-time sign language letter and word recognition from depth data,” 2011 IEEE Int. Conf. Comput. Vis. Work. (ICCV Work.), pp. 383–390, Nov. 2011.
[18] K. Fujimura, “Hand gesture recognition using depth data,” Sixth IEEE Int. Conf. Autom. Face Gesture Recognition, 2004. Proceedings., pp. 529–534, 2004.
[19] U. Neumann, “Real-time hand pose recognition using low-resolution depth Images,” 2006 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. - Vol. 2, vol. 2, pp. 1499–1505, 2006.
[20] J. Tompson, M. Stein, Y. Lecun, and K. E. N. Perlin, “Real-time continuous pose recovery of human hands using convolutional networks,” ACM Trans. on Graphic., vol. 33, no. 5, 2014.
[21] S. Park, S. Yu, J. Kim, S. Kim, and S. Lee, “3D hand tracking using kalman filter in depth space,” EURASIP J. Adv. Signal Process., vol. 2012, no. 1, p. 36, 2012.
[22] M. S. M. Asaari and S. A. Suandi, “Hand gesture tracking system using adaptive kalman filter,” 2010 10th Int. Conf. Intell. Syst. Des. Appl., pp. 166–171, Nov. 2010.
[23] C. Chen, M. Zhang, K. Qiu, and Z. Pan, “Real-time robust hand tracking based on camshift and motion velocity,” 2014 5th Int. Conf. Digit. Home, pp. 20–24, Nov. 2014.
[24] Y. Jang, “Gesture recognition using depth-based hand tracking for contactless controller application,” 2012 IEEE Int. Conf. Consum., pp. 297–298, 2012.
[25] A. Thayananthan, R. Navaratnam, P. H. S. Torr, and R. Cipolla, “Multivariate Relevance Vector Machines for Tracking,” 2006 European Converence on Computer Vision (ECCV)., pp. 124–138. 2006.
[26] C. Keskin, F. Kıraç, Y. Kara, and L. Akarun, “Real time hand pose estimation using depth sensors,” Consum. Depth Cameras., pp. 1228–1234, 2013.
[27] C.-P. Chen, Y.-T. Chen, P.-H. Lee, Y.-P. Tsai, and S. Lei, “Real-time hand tracking on depth images,” 2011 Vis. Commun. Image Process., no. 1, pp. 1–4, Nov. 2011.
[28] M.-B. Kaâniche and F. Brémond, “Recognizing gestures by learning local motion signatures of HOG descriptors.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2247–58, Nov. 2012.
[29] M. B. Kaaniche and F. Bremond, “Tracking HoG descriptors for gesture recognition,” 2009 Sixth IEEE Int. Conf. Adv. Video Signal Based Surveill., pp. 140–145, Sep. 2009.
[30] O. Oreifej and Z. Liu, “HON4D: Histogram of Oriented 4D normals for activity recognition from depth sequences,” 2013 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 716–723, Jun. 2013.
[31] A. Mumtaz, E. Coviello, G. R. G. Lanckriet, and A. B. Chan, “A scalable and accurate descriptor for dynamic textures using bag of system trees,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 4, pp. 697–712, Apr. 2015.
[32] A. Just and S. Marcel, “A comparative study of two state-of-the-art sequence processing techniques for hand gesture recognition,” Comput. Vis. Image Underst., vol. 113, no. 4, pp. 532–543, 2009.
[33] S. Kim, G. Park, S. Yim, S. Choi, and S. Choi, “Gesture-recognizing hand-held interface with vibrotactile feedback for 3D interaction,” IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 1169–1177, Aug. 2009.
[34] Christopher M. Bishop, "Pattern recognition and machine learning," Springer, 2006.
[35] L. Deng and X. Li, “Machine learning paradigms for speech recognition: an overview,” IEEE Trans. Audio. Speech. Lang. Processing, vol. 21, no. 5, pp. 1060–1089, May 2013.
[36] J. T. Geiger, F. Weninger, J. F. Gemmeke, M. Wöllmer, B. Schuller, G. Rigoll, and S. Member, “Memory-enhanced neural networks and nmf for robust ASR,” IEEE/ACM Trans., Audio, Speech, and Language Processing., vol. 22, no. 6, pp. 1037–1046, 2014.
[37] Z. Li and R. Jarvis, “Real time hand gesture recognition using a range camera,” Australas. Conf. Robot. Autom., 2009.
[38] G. Saon, “Bayesian Sensing Hidden Markov Models,” IEEE Trans. Audio. Speech. Lang. Processing, vol. 20, no. 1, pp. 43–54, Jan. 2012.
[39] K. Murphy, “HMM matlab toolbox.” MIT, 1998. Available : http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
[40] D.-J. Kroon, “Kinect Matlab.” 2013. Available : http://www.mathworks.com/matlabcentral/fileexchange/30242-kinect-matlab.
[41] Wikipedia, “Body Language.” [Online]. Available: https://en.wikipedia.org/wiki/Body_language.
[42] N. Mohammadiha, S. Member, and A. Leijon, “Nonnegative hmm for babble noise derived from speech hmm : application to speech enhancement,” IEEE Trans. Audio. Speech. Lang. Processing, vol. 21, no. 5, pp. 998–1011, 2013.
[43] B. Raj and R. M. Stern, “Missing-feature approaches in speech recognition ©,” no. September 2005, pp. 101–116.
[44] O. Aran and L. Akarun, “Multi-class classification strategies for fisher scores of gesture and sign sequences,” 2008 19th Int. Conf. Pattern Recognit., pp. 1–4, Dec. 2008.
[45] G. a. Ten Holt, A. J. Van Doorn, M. J. T. Reinders, E. a. Hendriks, and H. De Ridder, “Human-inspired search for redundancy in automatic sign language recognition,” ACM Trans. Appl. Percept., vol. 8, no. 2, pp. 1–15, Jan. 2011.
[46] S. C. W. Ong and S. Ranganath, “Automatic sign language analysis: a survey and the future beyond lexical meaning.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 873–91, Jun. 2005.
[47] S. Gupta, D. Morris, S. N. Patel, and D. Tan, “SoundWave : Using the doppler effect to sense gestures,” pp. 4–7, 2012.
[48] M. Chen, G. Alregib, S. Member, and B. Juang, “Feature processing and modeling for 6D motion gesture recognition,” IEEE Trans. Multimedia., vol. 15, no. 3, pp. 561–571, 2013.
[49] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks for human action recognition,” IEEE Trans., Pattern Analysis and Machine Intelligence., vol. 35, no. 1, pp. 221–231, 2013.
[50] S. España-Boquera, M. J. Castro-Bleda, J. Gorbe-Moya, and F. Zamora-Martinez, “Improving offline handwritten text recognition with hybrid HMM/ANN models.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 4, pp. 767–79, Apr. 2011.
[51] M. Bicego, C. Acosta-muñoz, and M. Orozco-alzate, “Classification of seismic volcanic signals using hidden-markov-model-based generative embeddings,” IEEE Trans. Geoscience and Remote Sensing., vol. 51, no. 6, pp. 3400–3409, 2013.
[52] M. J. F. Gales and K. Yu, “Canonical state models for automatic speech recognition,” pp. 9–12.
[53] Michael E. Tipping, “Sparse bayesian learning and the relevance vector machine,” J. Mach. Learn. Res., vol. 1, no. 9/1/2001, pp. 211–244, 2001.
[54] N. Dalal, B. Triggs, and D. Europe, “Histograms of oriented gradients for human detection,” IEEE Conf. Computer Vision and Pattern Recognition (CVPR)., vol. 1, pp. 886-893. 2005.
[55] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.
[56] S. Belongie, J. Malik, and J. Puzicha, “Matching shapes,” Proc. Eighth IEEE Int. Conf. Comput. Vision. ICCV 2001, vol. 1, pp. 454–461, 2001.
[57] W. T. Freeman, “For computer games,” pp. 100–105, 1996.
[58] W. Freeman and M. Roth, “Orientation histograms for hand gesture recognition,” Int. Work. Autom., pp. 296–301, 1995.
[59] P. Viola and M. J. Jones, “Detecting pedestrians using patterns of motion and appearance,” Proc. Ninth IEEE Int. Conf. Comput. Vis., pp. 734–741 vol.2, 2003.
[60] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in images by components,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 4, pp. 349–361, Apr. 2001.
[61] J. R. Hershey and P. A. Olsen, “Variational bhattacharyya divergence for hidden markov models,” in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, pp. 4557–4560.
[62] M. Zhang, Q. Wang, Z. He, Y. Shen, and Y. Lin, “Bhattacharyya distance based kernel method for hyperspectral data multi-class classification,” 2010 IEEE Instrum. Meas. Technol. Conf. Proc., no. 1, pp. 629–632, 2010.
[63] T. Huang, G. Yang, and G. Tang, “A fast two-dimensional median filtering algorithm,” Acoust. Speech Signal, no. 1, 1979.
[64] X. Yang, C. Zhang, and Y. Tian, “Recognizing actions using depth motion maps-based histograms of oriented gradients,” Proc. 20th ACM Int. Conf. Multimed. - MM ’12, no. c, p. 1057, 2012.
[65] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, “Robust 3D action recognition with random occupancy patterns,” ECCV, pp. 872–885, 2012.
[66] A. Klaser, M. Marszalek, C. Schmid, A. S. D. Based, M. Everingham, C. Needham, R. F. Bmvc, and I. Grenoble, “A spatio-temporal descriptor based on 3D-gradients,” BMVC, 2008. |