參考文獻 |
[1] G. E. Moore, Electronics, 38, 114 (1965). http://web.eng.fiu.edu/npala/eee6397ex/gordon_moore_1995_article.pdf
[2] M. Bohr, “The Evolution of Scaling from the Homogeneous Era to the Heterogeneous Era,” IEEE Int. Elect. Dev. Meet. 1.1 1 (2011).
[3] J. P. Colinge, “Multi-gate SOI MOSFETs,” Microelectron. Eng., 84, 2071 (2007).
[4] N. Srivastava and K. Banerjee, “Interconnect challenges for nanoscale electronic circuits,” TMS J. Mater., 56, 30 (2004).
[5] B. Hoefflinger, CHIPS 2020 VOL. 2, p. 78, Springer International Publishing, Switzerland (2016).
[6] M. Paniccia and J. Bower, “First electrically pumped hybrid silicon laser,” pp.1–27 (2006).
[7] https://www.rt.com/usa/nsa-secretly-access-yahoo-google-982/
[8] https://commons.wikimedia.org/wiki/File:Fiber_attenuation.pdf
[9] http://case.ntu.edu.tw/blog/?p=22022
[10] G. Chen, H. Chen, M. Haurylau, N. Nelson, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Int. Work. Syst. Lev. Interconnect Predict., p. 13 (2005).
[11] W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77oK and 300oK,” Phys. Rev., 99, 1151 (1955).
[12] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “Ill-V compound semiconductor devices : optical detectors,” IEEE Trans. Electron Devices, 31, 1643 (1984).
[13] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics, 9, 88 (2015).
[14] S. A. Srinivasan, M. Pantouvaki, S. Gupta, H. T. Chen, P. Verheyen, G. Lepage, G.r Roelkens, K. Saraswat, D. V. Thourhout, P. Absil, and J. V. Campenhout, “56 Gb/s germanium waveguide electro-absorption modulator,” J. Lightwave Technol., 34, 419 (2016).
[15] A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics, 8, 579 (2014).
[16] G. Chen, Y. Yu, X. Xiao, and X. Zhang, “High speed and high power polarization insensitive germanium photodetector with lumped structure,” Opt. Express, 24, 10030 (2016).
[17] P.-K. Shen, C.-T. Chen, C.-C. Chang, H.-L. Hsiao, Y.-C. Chang, S.-L. Li, H.-Y. Tsai, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “Optical interconnect transmitter based on guided-wave silicon optical bench,” Opt. Exp., 20, 10382 (2012).
[18] M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett., 72, 1718 (1998).
[19] A. Giussani, P. Rodenbach, P. Zaumeil, J. Dabrowski, R. Kurps, G.Weidner, H. J. Mussig, P. Storck, J. Wollschlager, and T. Schroedar, “Atomically smooth and single crystalline Ge(111)/cubic-Pr2O3(111)/Si(111) heterostructures: Structural and chemical composition study,” J. Appl. Phys., 105, 033512 (2009).
[20] J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, and M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys., 63, 5738 (1988).
[21] S. J. Koster, J. D. Schaub, G. Delinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE. J. Sel. Top. Quantum Electron., 12, 1489 (2006).
[22] A. Nayfeh, C. O. Chui, K. C. Sawaswat, and T. Tonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett., 85, 2815 (2004).
[23] T. I. Kamins and R. S. Williams, “Lithographic positioning of self-assembled Ge islands on Si(001),” Appl. Phys. Lett., 71, 1201 (1997).
[24] T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett., 76, 3700 (2000).
[25] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express, 15, 11272 (2007).
[26] L. C. Kimerling, D.-L. Kwong, and K. Wada, “Scaling computation with silicon photonics,” MRS Bull., 39, 687 (2014).
[27] C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B, 39, 1871 (1989).
[28] S. K. Ray, S. Maikap, W. Banerjee, and S. Das, “Nanocrystals for silicon-based light-emitting and memory devices,” J. Phys. D: Appl. Phys., 46, 153001 (2013).
[29] M. H. Kuo, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., 101, 223107 (2012).
[30] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum-dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, 18, 45402 (2007).
[31] K. H. Chen, C. Y. Chien, and P. W. Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, 21, 055302 (2010).
[32] C. C. Wang, K. H. Chen, I. H. Chen, H. T. Chang, W. Y. Chen, J. C. Hsu, S. W. Lee, T. M. Hsu, M. T. Hung, and P. W. Li, “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” IEEE Trans. Nanotechnology, 11, 657 (2012).
[33] M. H. Kuo, S. K. Chou, Y. W. Pan, S. D. Lin, T. George, and P. W. Li, ““Embedded Emitters”: Direct bandgap Ge nanodots within SiO2,” 120, 233106 (2016).
[34] I. H. Chen, K. H. Chen, D. M. T. Kuo, and P. W. Li, “Single Ge quantum dot placement along with self-aligned electrodes for effective management of single charge tunneling,” IEEE Trans. Electron Devices, 59, 3224 (2012).
[35] I. H. Chen, W. T. Lai, and P. W. Li, “Realization of solid-state nanothermometer using Ge quantum-dot single-hole transistor in few-hole regime, “Appl. Phys. Lett., 104, 243506 (2014).
[36] S. S. Tzeng and P. W. Li, “Enhanced 400-600 nm photoresponsivity of metal-oxide-semiconductor diodes with multi-stack germanium quantum dots,” Nanotechnology, 19, 235203 (2008).
[37] S. S. Tseng, I. H. Chen, and P. W. Li, “Photoresponses in poly-Si phototransistors incorporating germanium quantum dots in the gate dielectrics,” Applied Physics Letters, 93, 191112 (2008).
[38] I. H. Chen, S. S. Tseng, and P. W. Li, “Thermal stability of germanium quantum dots phototransistors for near ultra-violet applications,” IEEE Photonics Technology Letters, 21, 1674 (2009).
[39] C. Y. Chien, Y. R. Chang, R. N. Chang, M. S. Lee, W. Y. Chen, T. M. Hsu, and P. W. Li, “Formation of Ge quantum dots array in layer-cake technique for advanced photovolatics,” Nanotechnology, 21, 505201 (2010).
[40] C. Y. Chien, Y. J. Chang, C. C. Wang, M. H. Kuo, W. T. Lai, and P. W. Li, “Size tunable Ge quantum dot metal-oxide-semiconductor photodiodes with low dark current and high responsivity for near ultraviolet to visible applications,” Nanoscale, 6, 5303 (2014).
[41] M. H. Kuo, W. T. Lai, T. M. Hsu, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology, 26, 055203 (2015).
[42] M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Scientific Report, 7, 44402 (2017).
[43] M. H. Kuo, P. Y. Hong, P. C. Liu, M. C. Lee, H. C. Lin, T. George, and Pei-Wen Li, “Very large photoresponsiviy and high photocurrent linearity for Ge-dot/SiO2/SiGe photoMOSFETs under gate modulation,” 25, 25467 (2017).
[44] W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A Unique Approach to Generate Self-Aligned SiO2/Ge/SiO2/SiGe Gate-Stacking Heterostructures in a Single Fabrication Step,” Nanoscale Research Letters, 10, 224 (2015).
[45] J. E. Chang, P. H. Liao, C. Y. Chien, J. C. Hsu, M. T. Hung, S. W. Lee, W. Y. Chen, T. M. Hsu, T. George, and P. W. Li, “Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots,” Journal of Physics D: Applied Physics, 45, 15303 (2012).
[46] M. T. Hung, C. C. Wang, J. Y. Chiou, J. C. Hsu, S. W. Lee, T. M. Hsu, P. W. Li, “Large reduction in thermal conductivity for Ge quantum dots embedded in SiO2 system,” Applied Physics Letters, 101, 251913 (2012).
[47] C. C. Wang, P. H. Liao, M. H. Kuo, Tom George, and P. W. Li, “The curious case of exploding quantum dots: Anomalous migration and growth behavior of Ge under Si oxidation,” Nanoscale Research Lett., 8, 192 (2013).
[48] K. H. Chen, C. C. Wang, Tom George, and P. W. Li, “The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Research Letter, 9, 339 (2014).
[49] K. H. Chen, C. C. Wang, Tom George, and P. W. Li, “The pivotal role of SiO for formation in the migration and Ostwald Ripening of Ge quantum dots,” Appl. Phys. Lett., 105, 122102 (2014).
[50] K. H. Chen, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “The Pivotal Role of Oxygen Interstitials in the Dynamics of Growth and Movement of Germanium Nanocrystallites,” Cryst. Eng. Comm., 17, 6370 (2015).
[51] W. Schottky, “Halbleitertheorie der sperrschicht,” Naturwissenschaften, 26, 843 (1938).
[52] M. F. Li, Modern semiconductor quantum physics: World Science (1994).
[53] Cahay, “Quantum Confinement VI: Nanostructured Materials and Devices :
Proceedings of the International Symposium,” The Electrochemical Society, (2012).
[54] H. Haug and S. W. Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors.” World Scientific. (1994). C. Weisbuch and B. Vinter, “Quantum semiconductor structures,” Academic Press Inc, San Diego, (1991).
[55] Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem., 95, 525 (1991).
[56] C. E. Bottani, C. Mantini, P. Mailani, M. Manfredini, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, “Raman, optical-absorption, and transmission electron microscopy study of size effects in germanium quantum dots,” Appl. Phys. Lett., 69, 2409 (1996).
[57] A. Imre1, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, W. Porod, ”Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata,” Science, 311, 205 (2006)
[58] I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and G. L. Snider, “Digital Logic Gate Using Quantum-Dot Cellular Automata,” Science, 284, 289 (1999).
[59] L. Robledo, J. Elzerman, G. Jundt, M. Atatüre, A.Högele, S. Fält, and A. Imamoglu, “Conditional Dynamics of Interacting Quantum Dots,” Science, 320, 772 (2008).
[60] T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, “Bidirectional counting of single electrons,” Science, 312, 1634 (2006).
[61] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Y. A, Pashkin, Y. Nakamura, and J. S. Tsai, “Single artificial-atom lasing,” Nature, 449, 588 (2007).
[62] P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G, Perera, “Characteristics of a Tunne ling Quantum-dot Infrared Photodetector Operating at Room Temperature,” Appl. Phys. Lett., 86, 191106 (2005).
[63] I. L. Medintz, H. T. Uyeda, E. R. Goldman and Hedi. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Materials, 4, 435 (2005).
[64] C. Y. Zhang, H. C. Yeh, M. T. Kuroki and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nature Materials, 4, 826 (2005).
[65] Y. Maeda, N. Tsukamoto, and Y. Yazawa, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., 59, 3168 (1991).
[66] M. Nogami, and Y. Abe, “Sol-gel synthesis of Ge nanocrystals-doped glass and its photoluminescence,” J. Sol. Gel. Sci. Tehnol., 9, 139 (1997).
[67] I. Stavarache, A. M. Lepadatu, N. G. Gheorghe, R. M. Costescu, G. E. Stan, D. Marcov, A. Slav, G. Iordache, T. F. Stoica, V. Iancu, V. S. Teodorescu, C. M. Teodorescu, and M. L. Ciurea, “Structural investigations of Ge nanoparticles embedded in an amorphous SiO2 matrix,” J. Nanopart. Res., 13, 221 (2011).
[68] H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol-gel method,” Appl. Phys. Lett., 81, 5144 (2002).
[69] S. Cosentino, S. Mirabella, M. Miritello, G. Nicotra, R. L. Svio, F. Simone, C. Spinella, and A. Terrasi, “The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica,” Nanoscale Res. Lett., 6, 135 (2011).
[70] I. Stavarche, A. M. Lepadatu, T. Stoica, and M. L. Ciurea, “Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2,” Appl. Surf. Sci., 285, 175 (2013).
[71] Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett., 61, 2187 (1992).
[72] P. K. Giri, S. Bhattacharyya, S. Kumari, K. Das, S. K. Ray, B. K. Panigrahi, and K. G. M. Nair, “Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix,” J. Appl. Phys., 103, 103534 (2008).
[73] J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, “Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices,” J. Appl. Phys., 78, 4386 (1995).
[74] J. V. Borany, R. Grötzschel, K. H. Heinig, A. Markwitz, W. Matz, B. Schmidt, and W. Skorupa, “Multimodal impurity redistribution and nanocluster formation in Ge implanted silicon dioxide films,” Appl. Phys. Lett., 71, 3215 (1997).
[75] S. Mirabella, S. Cosentino, A. Gentile, G. Nicotra, N. Piluso, L. V. Mercaldo, F. Simone, C. Spinella, and A. Terrasi, “Matrix role in Ge nanoclusters embedded in Si3N4 or SiO2,” Appl. Phys. Lett., 101, 011911 (2012).
[76] Z. P. Zhang, Y. X. Song, Q. M. Chen, X. Y. Wu, Z. Y. S. Zhu, L. Y. Zhang, Y. Y. Li, and S. M. Wang, “Growth mode of tensile-strained Ge quantum dots grown by molecular beam epitaxy,” J. Phys. D: Appl. Phys., 50, 465301 (2017).
[77] C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Physical Review B, 57, 8805 (1998).
[78] G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, B. Dietrich, B. Tillack and T. Schroeder, “Selective Ge heteroepitaxy on free-standing Si (001) nanopatterns: A combined Raman, transmission electron microscopy, and finite element method study,” J. Appl. Phys., 110, 053509 (2011).
[79] G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, B. Dietrich, B. Tillack and T. Schroeder, “Compliant substrate versus plastic relaxation effects in Ge nanoheteroepitaxy on free-standing Si(001) nanopillars,” Appl. Phys. Lett., 99, 141901 (2011).
[80] W. T. Lai, P. H. Liao, A. P. Homyk, A. Scherer, and P. W. Li, “SiGe quantum dots on Si pillars for visible to near-infrared photodetection,” IEEE Photonic Technology Lett., 25, 1520 (2013).
[81] A. Olzierski, A. G. Nassiopoulou, I. Raptis and T. Stoica, “Two-dimensional arrays of nanometre scale holes and nano-V-grooves in oxidized Si wafers for the selective growth of Ge dots or Ge/Si hetero-nanocrystals,” Nanotechnology, 15, 1695 (2004).
[82] T. Stoica, V. Shushunova, C. Dais, H. Solak and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on pre-patterned silicon substrates,” Nanotechnology, 18, 455307 (2007).
[83] C. Y. Chien, Y. J. Chang, K. H. Chen, W. T. Lai, T. George, A. Scherer, and P. W. Li, Nanotechnology, 22, 435602 (2011).
[84] P. H. Liao, T. C. Hsu, K. H. Chen, T. H. Cheng, T. M. Hsu, C. C. Wang, T. George, and P. W. Li, “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Letts., 105, 172106 (2014).
[85] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Optics Letters, 35, 679 (2010).
[86] B. Delley, and E. F. Steigmeier, “Quantum confinement in Si nanocrystals,” Phys. Rev. B, 47, 1397 (1993).
[87] S. Manna1, A. Katiyar, R. Aluguri, and S. K. Ray, “Temperature dependent photoluminescence and electroluminescence characteristics of core-shell Ge–GeO2 nanowires,” J. Phys. D.: Appl. Phys., 48, 215103 (2015).
[88] A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, S. Solosin, V. Yam, D. Bouchier, and V. Le Thanh, “Polarized Raman spectroscopy of multilayer Ge∕Si(001) quantum dot heterostructures,” J. Appl. Phys., 96, 2857 (2004).
[89] K. L. Teo, S. H. Kwok, P. Y. Yu, and S. Guha, “Quantum confinement of quasi-two-dimensional E1 excitons in Ge nanocrystals studied by resonant Raman scattering,” Phys. Rev. B, 62, 1584 (2000).
[90] J. S. Reparaz, A. Bernardi, A. R. Goñi, P. D. Lacharmoise, M. I. Alonso, M. Garriga, J. Novák, and I. Vávra, “Phonon pressure coefficient as a probe of the strain status of self-assembled quantum dots,” Appl. Phys. Lett., 91, 081914 (2007).
[91] Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B, 51, 1658 (1995).
[92] L. Brus, “Zero-dimensional" excitons" in semiconductor clusters,” IEEE J. Quantum Electron., 22, 1909 (1986).
[93] T. R. Harris, Y. K. Yeo, M. Y. Ryu, R. T. Beeler, and J. Kouvetakis, “Observation of heavy-and light-hole split direct bandgap photoluminescence from tensile-strained GeSn (0.03% Sn),” J. Appl. Phys., 116, 103502 (2014).
[94] M. Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett., 102, 171908 (2013).
[95] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett., 82, 2044 (2003).
[96] K. Guilloy, N. Pauc, A. Gassenq, Y. Niquet, J. Escalante, I. Duchemin, S. Tardif, G. Osvaldo Dias, D. Rouchon, J. Widiez, J. Hartmann, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, and V. Calvo, “Germanium under High Tensile Stress: Nonlinear Dependence of Direct Band Gap vs Strain,” ACS Photonic., 3, 1907 (2016).
[97] Y. Kawamura, K. Huang, S. Thombare, S. Hu, M. Gunki, T. Ishikawa, M. Brongersma, K. Itoh, and P. McIntyre, “Direct-gap photoluminescence from germanium nanowires,” Phys. Rev. B, 86, 035306 (2012).
[98] G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Men´endez, “Direct versus indirect optical recombination in Ge films grown on Si substrates,” Phys. Rev. B, 84, 205307 (2011).
[99] G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express, 18, 19957 (2010).
[100] H. T. Chang, C. C. Wang, J. C. Hsu, M. T. Hung, P. W. Li, and S. W. Lee, “High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials,” Appl. Phys. Lett., 102, 101902 (2013).
[101] O. G. Schmidt, U. Denker, K. Eberl, O. Kienzle, and F. Ernst, “Effect of overgrowth temperature on the photoluminescence of Ge/Si islands,” Appl. Phys. Lett., 77, 2509 (2000).
[102] A. Alkhatib and A. Nayfeh, “A complete physical germanium-on-silicon quantum dot self-assembly process,” Sci. Rep., 3, 2099 (2013).
[103] H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett., 66, 3024 (1995).
[104] E. C. Lightowlers, V. Higgs, M. J. Gregson, G. Davies, S. T. Davey, C. J. Gibbings, C. G. Tuppen, F. Schaffler, and E. Kasper, “Photoluminescence characterization of molecular beam epitaxial silicon,” Thin Solid Films, 183, 235 (1989).
[105] M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett., 79, 2261 (2001).
[106] S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys., 82, 3870 (1997).
[107] A. I. Yakimov, A. V. Dvurechenskioe, A. I. Nikiforov, and O. P. Pchelyakov, “Negative interband photoconductivity in Ge/Si heterostructures with quantum dots of the second type,” JETP Lett., 72, 186 (2000).
[108] R. K. Singha, S. Manna, S. Das, A. Dhar, and S. K. Ray, “Room temperature infrared photoresponse of self assembled Ge/Si (001) quantum dots grown by molecular beam epitaxy,” Appl. Phys. Lett., 96, 233113 (2010).
[109] S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express, 22, 5052 (2014).
[110] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, S. V. Chaikovskii, and S. A. Tiis, “Ge/Si photodiodes with embedded arrays of Ge quantum dots forthe near infrared (1.3–1.5 µm) region,” Semiconductors, 37, 1345 (2003).
[111] A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. C. Saraswat, “Silicon Germanium CMOS Optoelectronic Switching Device: Bringing Light to Latch,” IEEE Trans. Electron Devices, 54, 3252 (2007).
[112] R. W. Going, J. Loo, T. J. K. Liu, and M. C. Wu, “Germanium Gate PhotoMOSFET Integrated to Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron., 20, 8201607 (2014).
[113] S. Sahni, X. Luo, J. Liu, Y. Xie, and E. Yablonovitch “Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator,” Optics Letters, 33, 1138 (2008).
[114] J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon Waveguide Integrated Germanium JFET Photodetector With Improved Speed Performance,” IEEE Photonics Technol. Lett., 23, 765 (2011).
[115] K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-Voltage and High-Responsivity Germanium Bipolar Phototransistor for Optical Detections in the Near-Infrared Regime,” IEEE Electron Device Lett., 29, 1124 (2008).
[116] P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process.” Solid-State Electronics, 74, 49 (2012).
[117] R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express, 23, 11975 (2015).
[118] H. Y. Yu, M. Ishibashi, J. H. Park, M, Kobayashi, and K. C. Saraswat, “p-Channel Ge MOSFET by selectively heteroepitaxially grown Ge on Si,” IEEE Electron Device Lett., 30, 675 (2009).
[119] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, “High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation,” IEEE Trans. Electron Devices, 59, 335 (2012).
[120] K. H. Chen, C. C. Wang, T. George, and P. W. Li, “The pivotal role of SiO formation in the migration and Ostwald ripening of Ge quantum dots,” Appl. Phys. Lett., 105, 122102 (2014).
[121] C. Y. Chien, Y. J. Chang, K. H. Chen, W. T. Lai, T. George, A. Scherer, and P. W. Li, “Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots” Nanotechnology, 22, 435602 (2011).
[122] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors,” Appl. Phys. Lett., 56, 650 (1990).
[123] S. M. GadelRab and S. G. Chamberlain, “The source-gated amorphous silicon photo-transistor,” IEEE Trans. Electron Devices, 44, 1789 (1997).
[124] S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors:” Appl. Phys. Lett., 109, 053508 (2016).
[125] V. Sorianello, G. De Angelis, A. De Iacovo, L. Colace, S. Faralli, and M. Romagnoli, “High responsivity SiGe heterojunction phototransistor on silicon photonics platform,” Opt. Express, 23, 28163 (2015).
[126] H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small, 10, 2300 (2014).
[127] A. M. Pravilov, Radiometry in Modern Scientific Experiments (Springer, 2011).
[128] F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett., 12, 5740 (2012).
[129] S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett., 109, 053508 (2016).
|