博碩士論文 102581004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.138.36.214
姓名 郭銘浩(Ming-Hao Kuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量身訂作鍺量子點崁入式發射器與鍺量子點光偵測器應用於單石積體化矽光電晶片
(Designer Ge-dots embedded emitters and Ge-dots photodetector for monolithically-integrated Si optical interconnects)
相關論文
★ 鍺奈米球/二氧化矽/矽鍺殼異質結構之應力工程與無接面N型金氧半場效電晶體研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文展示了精確控制鍺量子點Si3N4或SiO2中之位置和數量的能力。藉由選擇性氧化氮化矽與二氧化矽上方之矽鍺納米柱之技術,以“量身訂作”鍺量子點掩埋於矽基版上之氮化矽與二氧化矽之中。藉此,我們成功地製作了不同種類的鍺量子點光電元件,如鍺量子點嵌入式光發射器和鍺量子點金氧半光電晶體,為光互連和通信系統應用提供了一種可行途徑。
將嵌入二氧化矽中的30-70nm 鍺量子點整合於微碟盤中 (microdisk)。藉由拉曼波峰紅移證明,當嵌入二氧化矽中的鍺量子點隨著尺寸愈小而受到量子侷限效應和拉伸應力愈大。如此大的量子限制效應和拉伸應變效應,造成價電帶會分裂為輕空穴價電帶 (LH) 與重空穴價電帶 (HH),使得螢光光激發譜線上解析出0.83eV (LH) 和0.88eV (HH) 之兩個波峰。測量由10 K到100 K之時間解析螢光光激發譜線,觀察出對溫度不敏感的光激發載子的生命週期分別為2.7ns (HH) 和5ns (LH)。藉此,分別為拉伸應變之鍺量子點提供了直接帶隙光致發光的更強有力證據。
最後,我們提出了一種新『一體成型』SiO2 / Ge-dot / SiO2 / SiGe異質結構為本,運用CMOS技術,製作出應用於能夠偵測可見光至近紅外光之鍺量子點光電晶體。其中,閘極氧化層厚度和鍺量子點的直徑都是可調變的。當鍺量子點光電晶體操作於ON區和OFF區下,分別可以藉助鍺量子點引發的光伏和光導效應,來增進光電晶體在400-1550nm波長區間的光響應度、光電流增益、以及操作速度。對於將鍺量子點體積歸一化,解析出隨著將閘極氧化層厚度從38.5nm降低到3.5nm、鍺量子點直徑從90nm降低到50nm,鍺量子點光電晶體之光電轉換效率和響應速度都得到顯著改善。其中在90nm鍺量子點光電晶體在入射光波長為 850nm 和 1550nm (目前光通訊波段主流) 10nW的照射下,都展現極高的光響應度,分別為 1.2*10^4 A/W和300 A/W。尤其在溝道長度為3微米的50nm鍺量子點光電晶體,在850nm脈衝雷射照射條件下,元件響應時間為0.48ns,3dB頻率達到2GHz,這為未來矽基光互連提供了巨大的潛力應用。
摘要(英) This thesis demonstrates the capability of precise control of locations and numbers of Ge QDs within Si3N4 or SiO2. Based on the “designer” Ge nanodots in Si3N4 and SiO2 matrix on Si substrate through high-temperature selective thermal oxidation of SiGe nanopillars-on-insulator such as silicon nitride and silicon oxide over Si substrate. We have successfully reported different kind of Ge nanodots photonic devices, such as Ge nanodots embedded emitters and Ge QD MOS phototransistor, providing a way for optical interconnect and communication system applications.
We incorporated 30-70nm Ge nanodots embedded within SiO2 into a microdisk. The Ge nanodots embedded in SiO2 are subjected to increasing quantum-confinement and tensile-strain by reducing dot size, as evidenced by large Raman red shifts. These large quantum-confinement effect and tensile-strain effect are consistent with the strain-split photoluminescence transitions to the light-hole (LH) and heavy-hole (HH) valence bands at 0.83eV and 0.88eV, respectively. Time-resolved photoluminescence measurements conducted from 10-100 K show temperature-insensitive carrier lifetimes of 2.7ns and 5ns for the HH and LH valence-band transitions, respectively, providing additional strong evidence of direct bandgap photoluminescence for tensile-strained Ge nanodots.
Finally, we report a novel visible-near infrared photoMOSFET containing a self-organized, gate-stacking heterostructure of SiO2/Ge-dot/SiO2/SiGe-channel on Si substrate that is simultaneously fabricated in a single oxidation step. Both the gate oxide thickness and the diameter of the Ge dots are controllable. Large photocurrent enhancement was achieved for our Ge-dot photoMOSFETs when electrically-biased at ON- and OFF-states based on the Ge dot mediating photovoltaic and photoconductive effects, respectively. Both photoelectric conversion efficiency and response speed are significantly improved by reducing the gate-oxide thickness from 38.5 nm to 3.5 nm, and by decreasing Ge-dot size from 90 nm to 50 nm for a given areal density of Ge dots. Photoresponsivity (R) values as high as 1.2*10^4 A/W and 300 A/W are measured for 10 nW illumination at 850 nm and 1550 nm, respectively. A response time of 0.48 ns and a 3 dB-frequency of 2 GHz were achieved for 50 nm-Ge-dot photoMOSFETs with channel lengths of 3um under pulsed 850 nm illumination, offering a great potential for future Si-based optical interconnection applications.
關鍵字(中) ★ 鍺量子點
★ 光傳輸
★ 光偵測器
★ 光發射器
★ 光電晶體
關鍵字(英) ★ Ge QD-dots
★ optical interconnects
★ photodetectors
★ photo emitters
★ phototransistors
論文目次 摘要……………………………………………………………………………………………..i
Abstract…………………………………………………………………………………….... iii
Table of Contents……………………………………………………………………………...v
List of Figures……………………………………………………………………….……....viii
List of Tables………………………………………………………………………………...xvi
Chapter 1: Introduction……………………………………………………………………....1
1-1 Motivation ……………………………………………………………………….….. 1
1-2 Window choice on Si optical interconnect………………………………………….. 5
1-3 Anatomy of optical interconnects……………………………………………….……6
1-4 Monolithic integration in Si optical interconnects: potentials and challenges……….8
1-4-1 Challenge for high quality Ge on Silicon heterostructures………………….10
1-4-2 Challenge of Ge material for optical light source…………………………...10
1-5 This work……………………………………………………………………….…...12
1-6 Organization of the dissertation……………………………………………….…….13
Chapter 2: Formation and Growth Mechanisms of Ge QDs…………………………...16
2-1 Introduction…………………………………………………………………….……16
2-2 Background review of the formation of Ge QDs……………………………….…...17
2-2-1 Self-assembly techniques: chemical synthesis or atomic-layer epitaxy…………...18
2-2-2 Selective growth on patterned structures………………………………….…18
2-3 Review of “Designer” Ge quantum dots formed by selective oxidation SiGe pillars
over the Si-containing layers…………………………………………………..……...19
2-3-1 “Designer” Ge QD in Si3N4 matrix and encountering the Si substrate….……........20
2-3-2 “Designer” Ge QD in SiO2 matrix……………………………………….…..22
2-3-3 Chemical composition of Ge QDs…………………………….……………..24
2-3-4 Crystallinity and crystal structure of Ge QDs………………………………..25
2-4 Summary…………………………………………………………………………….27
Chapter 3:“Embedded Emitters”: Direct bandgap Ge nanodots within SiO2………....29
3-1 Introduction……………………………………………………………………….…29
3-2 Experimental Procedure……………………………………………………….…….30
3-3 Internal strain and phonon properties of Ge QD embedded emitters…………….…33
3-4 Photoluminescence properties of Ge QD embedded emitters…………………..…..36
3-4-1 Temperature dependence of photoluminescence properties………………....37
3-4-2 Power dependence of photoluminescence properties………………..……....40
3-5 Time-resolved photoluminescence properties of Ge QD embedded emitters…….....41
3-6 Summary…………………………………………………………………………….44
Chapter 4:Design of multifold Ge/Si/Ge composite quantum-dot heterostructures for visible to near-infrared photodetection…………………………………………………….45
4-1 Introduction………………………………………………………………………….45
4-2 Experimental procedure……………………………………………………………..46
4-2-1 Multifold Ge/Si/Ge composite QD (CQD) heterostructure on Si Substrate....47
4-2-2 Ge/Si CQD photodetectors fabrication……………………………………....47
4-2-3 Optical measurement system setup…………………………………………..49
4-3 Photoluminescence properties of multifold Ge/Si/Ge CQD heterostructure…….......50
4-4 Optical characterizationof Ge/Si/Ge CQD photodetectors………………………….52
4-5 Dynamic photoresponseof Ge/Si/Ge CQD photodetectors………………………....56
4-6 Comparison of Ge/Si/Ge CQD MSM photodetectors and Ge QD MOS
photodetectors……………………………………………………….………………57
4-7 Summary…………………………………………………………….………………60
Chapter 5 Optimal design Ge-dot PhotoMOSFETs for Monolithically-Integrated Si Optical Interconnects…………………………………………….………………………….61
5-1 Introduction…………………………………………………………………….……61
5-2 Device description, fabricationand operation………………………………….…….63
5-2-1 Ge-dot PhotoMOSFETs structure…………………………………….….......64
5-2-2 Ge QD photoMOSFETs fabrication………………………….…...…………66
5-2-3 Principle of Ge QD photoMOSFETs operation……………………….……..69
5-2-4 Optical measurement system setup…………………………………………..73
5-3 Optical characterization of Ge QD photoMOSFETs………………………………..75
5-3-1 High photocurrent gain of Ge QD photoMOSFETsunder 850nm1550nm
illumination…………………………………………………………………...76
5-3-2 Temperature dependence of Ge QD photoMOSFETs…………………….....81
5-3-3 Doping-type dependence of Ge QD photoMOSFETs……………......….…..82
5-3-4 Gate oxide-thickness effect and Ge QD size-tunable effect of Ge QD
PhotoMOSFETs……………………………………………….…………….85
5-4 High speed operation of Ge QD photoMOSFETs…………………………………..92
5-5 Wavelength dependence of Ge QD photoMOSFETs………………….……………93
5-6 Dynamic photocurrent response of Ge QD photoMOSFETs………………...……..95
5-7 Summary………………………………………………………….…………………97
Chapter 6 Conclusion and Future Work……………………………………….…...……..99
6-1 Conclusion…………………………………………………………….………….…99
6-2 Future Work………………………………………………………….…………….101
References…………………………………….……………………….……………………103
Publication List…………………………………………………………………………….117
A. Journal Papers….…………………………………………………………………..117
B. Conference Papers………………………………………………………….………118
參考文獻 [1] G. E. Moore, Electronics, 38, 114 (1965). http://web.eng.fiu.edu/npala/eee6397ex/gordon_moore_1995_article.pdf
[2] M. Bohr, “The Evolution of Scaling from the Homogeneous Era to the Heterogeneous Era,” IEEE Int. Elect. Dev. Meet. 1.1 1 (2011).
[3] J. P. Colinge, “Multi-gate SOI MOSFETs,” Microelectron. Eng., 84, 2071 (2007).
[4] N. Srivastava and K. Banerjee, “Interconnect challenges for nanoscale electronic circuits,” TMS J. Mater., 56, 30 (2004).
[5] B. Hoefflinger, CHIPS 2020 VOL. 2, p. 78, Springer International Publishing, Switzerland (2016).
[6] M. Paniccia and J. Bower, “First electrically pumped hybrid silicon laser,” pp.1–27 (2006).
[7] https://www.rt.com/usa/nsa-secretly-access-yahoo-google-982/
[8] https://commons.wikimedia.org/wiki/File:Fiber_attenuation.pdf
[9] http://case.ntu.edu.tw/blog/?p=22022
[10] G. Chen, H. Chen, M. Haurylau, N. Nelson, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Int. Work. Syst. Lev. Interconnect Predict., p. 13 (2005).
[11] W. C. Dash and R. Newman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77oK and 300oK,” Phys. Rev., 99, 1151 (1955).
[12] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “Ill-V compound semiconductor devices : optical detectors,” IEEE Trans. Electron Devices, 31, 1643 (1984).
[13] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics, 9, 88 (2015).
[14] S. A. Srinivasan, M. Pantouvaki, S. Gupta, H. T. Chen, P. Verheyen, G. Lepage, G.r Roelkens, K. Saraswat, D. V. Thourhout, P. Absil, and J. V. Campenhout, “56 Gb/s germanium waveguide electro-absorption modulator,” J. Lightwave Technol., 34, 419 (2016).
[15] A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics, 8, 579 (2014).
[16] G. Chen, Y. Yu, X. Xiao, and X. Zhang, “High speed and high power polarization insensitive germanium photodetector with lumped structure,” Opt. Express, 24, 10030 (2016).
[17] P.-K. Shen, C.-T. Chen, C.-C. Chang, H.-L. Hsiao, Y.-C. Chang, S.-L. Li, H.-Y. Tsai, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “Optical interconnect transmitter based on guided-wave silicon optical bench,” Opt. Exp., 20, 10382 (2012).
[18] M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett., 72, 1718 (1998).
[19] A. Giussani, P. Rodenbach, P. Zaumeil, J. Dabrowski, R. Kurps, G.Weidner, H. J. Mussig, P. Storck, J. Wollschlager, and T. Schroedar, “Atomically smooth and single crystalline Ge(111)/cubic-Pr2O3(111)/Si(111) heterostructures: Structural and chemical composition study,” J. Appl. Phys., 105, 033512 (2009).
[20] J. M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigne, and M. W. Denhoff, “Growth and characterization of Si1-xGex and Ge epilayers on (100) Si,” J. Appl. Phys., 63, 5738 (1988).
[21] S. J. Koster, J. D. Schaub, G. Delinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE. J. Sel. Top. Quantum Electron., 12, 1489 (2006).
[22] A. Nayfeh, C. O. Chui, K. C. Sawaswat, and T. Tonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett., 85, 2815 (2004).
[23] T. I. Kamins and R. S. Williams, “Lithographic positioning of self-assembled Ge islands on Si(001),” Appl. Phys. Lett., 71, 1201 (1997).
[24] T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett., 76, 3700 (2000).
[25] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express, 15, 11272 (2007).
[26] L. C. Kimerling, D.-L. Kwong, and K. Wada, “Scaling computation with silicon photonics,” MRS Bull., 39, 687 (2014).
[27] C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B, 39, 1871 (1989).
[28] S. K. Ray, S. Maikap, W. Banerjee, and S. Das, “Nanocrystals for silicon-based light-emitting and memory devices,” J. Phys. D: Appl. Phys., 46, 153001 (2013).
[29] M. H. Kuo, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., 101, 223107 (2012).
[30] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum-dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, 18, 45402 (2007).
[31] K. H. Chen, C. Y. Chien, and P. W. Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, 21, 055302 (2010).
[32] C. C. Wang, K. H. Chen, I. H. Chen, H. T. Chang, W. Y. Chen, J. C. Hsu, S. W. Lee, T. M. Hsu, M. T. Hung, and P. W. Li, “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” IEEE Trans. Nanotechnology, 11, 657 (2012).
[33] M. H. Kuo, S. K. Chou, Y. W. Pan, S. D. Lin, T. George, and P. W. Li, ““Embedded Emitters”: Direct bandgap Ge nanodots within SiO2,” 120, 233106 (2016).
[34] I. H. Chen, K. H. Chen, D. M. T. Kuo, and P. W. Li, “Single Ge quantum dot placement along with self-aligned electrodes for effective management of single charge tunneling,” IEEE Trans. Electron Devices, 59, 3224 (2012).
[35] I. H. Chen, W. T. Lai, and P. W. Li, “Realization of solid-state nanothermometer using Ge quantum-dot single-hole transistor in few-hole regime, “Appl. Phys. Lett., 104, 243506 (2014).
[36] S. S. Tzeng and P. W. Li, “Enhanced 400-600 nm photoresponsivity of metal-oxide-semiconductor diodes with multi-stack germanium quantum dots,” Nanotechnology, 19, 235203 (2008).
[37] S. S. Tseng, I. H. Chen, and P. W. Li, “Photoresponses in poly-Si phototransistors incorporating germanium quantum dots in the gate dielectrics,” Applied Physics Letters, 93, 191112 (2008).
[38] I. H. Chen, S. S. Tseng, and P. W. Li, “Thermal stability of germanium quantum dots phototransistors for near ultra-violet applications,” IEEE Photonics Technology Letters, 21, 1674 (2009).
[39] C. Y. Chien, Y. R. Chang, R. N. Chang, M. S. Lee, W. Y. Chen, T. M. Hsu, and P. W. Li, “Formation of Ge quantum dots array in layer-cake technique for advanced photovolatics,” Nanotechnology, 21, 505201 (2010).
[40] C. Y. Chien, Y. J. Chang, C. C. Wang, M. H. Kuo, W. T. Lai, and P. W. Li, “Size tunable Ge quantum dot metal-oxide-semiconductor photodiodes with low dark current and high responsivity for near ultraviolet to visible applications,” Nanoscale, 6, 5303 (2014).
[41] M. H. Kuo, W. T. Lai, T. M. Hsu, and P. W. Li, “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology, 26, 055203 (2015).
[42] M. H. Kuo, M. C. Lee, H. C. Lin, T. George, and P. W. Li, “High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects,” Scientific Report, 7, 44402 (2017).
[43] M. H. Kuo, P. Y. Hong, P. C. Liu, M. C. Lee, H. C. Lin, T. George, and Pei-Wen Li, “Very large photoresponsiviy and high photocurrent linearity for Ge-dot/SiO2/SiGe photoMOSFETs under gate modulation,” 25, 25467 (2017).
[44] W. T. Lai, K. C. Yang, T. C. Hsu, P. H. Liao, T. George, and P. W. Li, “A Unique Approach to Generate Self-Aligned SiO2/Ge/SiO2/SiGe Gate-Stacking Heterostructures in a Single Fabrication Step,” Nanoscale Research Letters, 10, 224 (2015).
[45] J. E. Chang, P. H. Liao, C. Y. Chien, J. C. Hsu, M. T. Hung, S. W. Lee, W. Y. Chen, T. M. Hsu, T. George, and P. W. Li, “Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots,” Journal of Physics D: Applied Physics, 45, 15303 (2012).
[46] M. T. Hung, C. C. Wang, J. Y. Chiou, J. C. Hsu, S. W. Lee, T. M. Hsu, P. W. Li, “Large reduction in thermal conductivity for Ge quantum dots embedded in SiO2 system,” Applied Physics Letters, 101, 251913 (2012).
[47] C. C. Wang, P. H. Liao, M. H. Kuo, Tom George, and P. W. Li, “The curious case of exploding quantum dots: Anomalous migration and growth behavior of Ge under Si oxidation,” Nanoscale Research Lett., 8, 192 (2013).
[48] K. H. Chen, C. C. Wang, Tom George, and P. W. Li, “The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Research Letter, 9, 339 (2014).
[49] K. H. Chen, C. C. Wang, Tom George, and P. W. Li, “The pivotal role of SiO for formation in the migration and Ostwald Ripening of Ge quantum dots,” Appl. Phys. Lett., 105, 122102 (2014).
[50] K. H. Chen, C. C. Wang, W. T. Lai, T. George, and P. W. Li, “The Pivotal Role of Oxygen Interstitials in the Dynamics of Growth and Movement of Germanium Nanocrystallites,” Cryst. Eng. Comm., 17, 6370 (2015).
[51] W. Schottky, “Halbleitertheorie der sperrschicht,” Naturwissenschaften, 26, 843 (1938).
[52] M. F. Li, Modern semiconductor quantum physics: World Science (1994).
[53] Cahay, “Quantum Confinement VI: Nanostructured Materials and Devices :
Proceedings of the International Symposium,” The Electrochemical Society, (2012).
[54] H. Haug and S. W. Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors.” World Scientific. (1994). C. Weisbuch and B. Vinter, “Quantum semiconductor structures,” Academic Press Inc, San Diego, (1991).
[55] Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem., 95, 525 (1991).
[56] C. E. Bottani, C. Mantini, P. Mailani, M. Manfredini, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, “Raman, optical-absorption, and transmission electron microscopy study of size effects in germanium quantum dots,” Appl. Phys. Lett., 69, 2409 (1996).
[57] A. Imre1, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, W. Porod, ”Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata,” Science, 311, 205 (2006)
[58] I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and G. L. Snider, “Digital Logic Gate Using Quantum-Dot Cellular Automata,” Science, 284, 289 (1999).
[59] L. Robledo, J. Elzerman, G. Jundt, M. Atatüre, A.Högele, S. Fält, and A. Imamoglu, “Conditional Dynamics of Interacting Quantum Dots,” Science, 320, 772 (2008).
[60] T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, “Bidirectional counting of single electrons,” Science, 312, 1634 (2006).
[61] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Y. A, Pashkin, Y. Nakamura, and J. S. Tsai, “Single artificial-atom lasing,” Nature, 449, 588 (2007).
[62] P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G, Perera, “Characteristics of a Tunne ling Quantum-dot Infrared Photodetector Operating at Room Temperature,” Appl. Phys. Lett., 86, 191106 (2005).
[63] I. L. Medintz, H. T. Uyeda, E. R. Goldman and Hedi. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Materials, 4, 435 (2005).
[64] C. Y. Zhang, H. C. Yeh, M. T. Kuroki and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nature Materials, 4, 826 (2005).
[65] Y. Maeda, N. Tsukamoto, and Y. Yazawa, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., 59, 3168 (1991).
[66] M. Nogami, and Y. Abe, “Sol-gel synthesis of Ge nanocrystals-doped glass and its photoluminescence,” J. Sol. Gel. Sci. Tehnol., 9, 139 (1997).
[67] I. Stavarache, A. M. Lepadatu, N. G. Gheorghe, R. M. Costescu, G. E. Stan, D. Marcov, A. Slav, G. Iordache, T. F. Stoica, V. Iancu, V. S. Teodorescu, C. M. Teodorescu, and M. L. Ciurea, “Structural investigations of Ge nanoparticles embedded in an amorphous SiO2 matrix,” J. Nanopart. Res., 13, 221 (2011).
[68] H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol-gel method,” Appl. Phys. Lett., 81, 5144 (2002).
[69] S. Cosentino, S. Mirabella, M. Miritello, G. Nicotra, R. L. Svio, F. Simone, C. Spinella, and A. Terrasi, “The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica,” Nanoscale Res. Lett., 6, 135 (2011).
[70] I. Stavarche, A. M. Lepadatu, T. Stoica, and M. L. Ciurea, “Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2,” Appl. Surf. Sci., 285, 175 (2013).
[71] Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett., 61, 2187 (1992).
[72] P. K. Giri, S. Bhattacharyya, S. Kumari, K. Das, S. K. Ray, B. K. Panigrahi, and K. G. M. Nair, “Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix,” J. Appl. Phys., 103, 103534 (2008).
[73] J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, “Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices,” J. Appl. Phys., 78, 4386 (1995).
[74] J. V. Borany, R. Grötzschel, K. H. Heinig, A. Markwitz, W. Matz, B. Schmidt, and W. Skorupa, “Multimodal impurity redistribution and nanocluster formation in Ge implanted silicon dioxide films,” Appl. Phys. Lett., 71, 3215 (1997).
[75] S. Mirabella, S. Cosentino, A. Gentile, G. Nicotra, N. Piluso, L. V. Mercaldo, F. Simone, C. Spinella, and A. Terrasi, “Matrix role in Ge nanoclusters embedded in Si3N4 or SiO2,” Appl. Phys. Lett., 101, 011911 (2012).
[76] Z. P. Zhang, Y. X. Song, Q. M. Chen, X. Y. Wu, Z. Y. S. Zhu, L. Y. Zhang, Y. Y. Li, and S. M. Wang, “Growth mode of tensile-strained Ge quantum dots grown by molecular beam epitaxy,” J. Phys. D: Appl. Phys., 50, 465301 (2017).
[77] C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng and C. H. Tung, “Optical properties of Ge self-organized quantum dots in Si,” Physical Review B, 57, 8805 (1998).
[78] G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, B. Dietrich, B. Tillack and T. Schroeder, “Selective Ge heteroepitaxy on free-standing Si (001) nanopatterns: A combined Raman, transmission electron microscopy, and finite element method study,” J. Appl. Phys., 110, 053509 (2011).
[79] G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, B. Dietrich, B. Tillack and T. Schroeder, “Compliant substrate versus plastic relaxation effects in Ge nanoheteroepitaxy on free-standing Si(001) nanopillars,” Appl. Phys. Lett., 99, 141901 (2011).
[80] W. T. Lai, P. H. Liao, A. P. Homyk, A. Scherer, and P. W. Li, “SiGe quantum dots on Si pillars for visible to near-infrared photodetection,” IEEE Photonic Technology Lett., 25, 1520 (2013).
[81] A. Olzierski, A. G. Nassiopoulou, I. Raptis and T. Stoica, “Two-dimensional arrays of nanometre scale holes and nano-V-grooves in oxidized Si wafers for the selective growth of Ge dots or Ge/Si hetero-nanocrystals,” Nanotechnology, 15, 1695 (2004).
[82] T. Stoica, V. Shushunova, C. Dais, H. Solak and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on pre-patterned silicon substrates,” Nanotechnology, 18, 455307 (2007).
[83] C. Y. Chien, Y. J. Chang, K. H. Chen, W. T. Lai, T. George, A. Scherer, and P. W. Li, Nanotechnology, 22, 435602 (2011).
[84] P. H. Liao, T. C. Hsu, K. H. Chen, T. H. Cheng, T. M. Hsu, C. C. Wang, T. George, and P. W. Li, “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Letts., 105, 172106 (2014).
[85] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Optics Letters, 35, 679 (2010).
[86] B. Delley, and E. F. Steigmeier, “Quantum confinement in Si nanocrystals,” Phys. Rev. B, 47, 1397 (1993).
[87] S. Manna1, A. Katiyar, R. Aluguri, and S. K. Ray, “Temperature dependent photoluminescence and electroluminescence characteristics of core-shell Ge–GeO2 nanowires,” J. Phys. D.: Appl. Phys., 48, 215103 (2015).
[88] A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, S. Solosin, V. Yam, D. Bouchier, and V. Le Thanh, “Polarized Raman spectroscopy of multilayer Ge∕Si(001) quantum dot heterostructures,” J. Appl. Phys., 96, 2857 (2004).
[89] K. L. Teo, S. H. Kwok, P. Y. Yu, and S. Guha, “Quantum confinement of quasi-two-dimensional E1 excitons in Ge nanocrystals studied by resonant Raman scattering,” Phys. Rev. B, 62, 1584 (2000).
[90] J. S. Reparaz, A. Bernardi, A. R. Goñi, P. D. Lacharmoise, M. I. Alonso, M. Garriga, J. Novák, and I. Vávra, “Phonon pressure coefficient as a probe of the strain status of self-assembled quantum dots,” Appl. Phys. Lett., 91, 081914 (2007).
[91] Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B, 51, 1658 (1995).
[92] L. Brus, “Zero-dimensional" excitons" in semiconductor clusters,” IEEE J. Quantum Electron., 22, 1909 (1986).
[93] T. R. Harris, Y. K. Yeo, M. Y. Ryu, R. T. Beeler, and J. Kouvetakis, “Observation of heavy-and light-hole split direct bandgap photoluminescence from tensile-strained GeSn (0.03% Sn),” J. Appl. Phys., 116, 103502 (2014).
[94] M. Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett., 102, 171908 (2013).
[95] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett., 82, 2044 (2003).
[96] K. Guilloy, N. Pauc, A. Gassenq, Y. Niquet, J. Escalante, I. Duchemin, S. Tardif, G. Osvaldo Dias, D. Rouchon, J. Widiez, J. Hartmann, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, and V. Calvo, “Germanium under High Tensile Stress: Nonlinear Dependence of Direct Band Gap vs Strain,” ACS Photonic., 3, 1907 (2016).
[97] Y. Kawamura, K. Huang, S. Thombare, S. Hu, M. Gunki, T. Ishikawa, M. Brongersma, K. Itoh, and P. McIntyre, “Direct-gap photoluminescence from germanium nanowires,” Phys. Rev. B, 86, 035306 (2012).
[98] G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Men´endez, “Direct versus indirect optical recombination in Ge films grown on Si substrates,” Phys. Rev. B, 84, 205307 (2011).
[99] G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express, 18, 19957 (2010).
[100] H. T. Chang, C. C. Wang, J. C. Hsu, M. T. Hung, P. W. Li, and S. W. Lee, “High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials,” Appl. Phys. Lett., 102, 101902 (2013).
[101] O. G. Schmidt, U. Denker, K. Eberl, O. Kienzle, and F. Ernst, “Effect of overgrowth temperature on the photoluminescence of Ge/Si islands,” Appl. Phys. Lett., 77, 2509 (2000).
[102] A. Alkhatib and A. Nayfeh, “A complete physical germanium-on-silicon quantum dot self-assembly process,” Sci. Rep., 3, 2099 (2013).
[103] H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island formation during growth of Ge on Si (100): A study using photoluminescence spectroscopy,” Appl. Phys. Lett., 66, 3024 (1995).
[104] E. C. Lightowlers, V. Higgs, M. J. Gregson, G. Davies, S. T. Davey, C. J. Gibbings, C. G. Tuppen, F. Schaffler, and E. Kasper, “Photoluminescence characterization of molecular beam epitaxial silicon,” Thin Solid Films, 183, 235 (1989).
[105] M. W. Dashiell, U. Denker, and O. G. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett., 79, 2261 (2001).
[106] S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys., 82, 3870 (1997).
[107] A. I. Yakimov, A. V. Dvurechenskioe, A. I. Nikiforov, and O. P. Pchelyakov, “Negative interband photoconductivity in Ge/Si heterostructures with quantum dots of the second type,” JETP Lett., 72, 186 (2000).
[108] R. K. Singha, S. Manna, S. Das, A. Dhar, and S. K. Ray, “Room temperature infrared photoresponse of self assembled Ge/Si (001) quantum dots grown by molecular beam epitaxy,” Appl. Phys. Lett., 96, 233113 (2010).
[109] S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express, 22, 5052 (2014).
[110] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, S. V. Chaikovskii, and S. A. Tiis, “Ge/Si photodiodes with embedded arrays of Ge quantum dots forthe near infrared (1.3–1.5 µm) region,” Semiconductors, 37, 1345 (2003).
[111] A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. C. Saraswat, “Silicon Germanium CMOS Optoelectronic Switching Device: Bringing Light to Latch,” IEEE Trans. Electron Devices, 54, 3252 (2007).
[112] R. W. Going, J. Loo, T. J. K. Liu, and M. C. Wu, “Germanium Gate PhotoMOSFET Integrated to Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron., 20, 8201607 (2014).
[113] S. Sahni, X. Luo, J. Liu, Y. Xie, and E. Yablonovitch “Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator,” Optics Letters, 33, 1138 (2008).
[114] J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon Waveguide Integrated Germanium JFET Photodetector With Improved Speed Performance,” IEEE Photonics Technol. Lett., 23, 765 (2011).
[115] K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-Voltage and High-Responsivity Germanium Bipolar Phototransistor for Optical Detections in the Near-Infrared Regime,” IEEE Electron Device Lett., 29, 1124 (2008).
[116] P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process.” Solid-State Electronics, 74, 49 (2012).
[117] R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express, 23, 11975 (2015).
[118] H. Y. Yu, M. Ishibashi, J. H. Park, M, Kobayashi, and K. C. Saraswat, “p-Channel Ge MOSFET by selectively heteroepitaxially grown Ge on Si,” IEEE Electron Device Lett., 30, 675 (2009).
[119] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, “High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation,” IEEE Trans. Electron Devices, 59, 335 (2012).
[120] K. H. Chen, C. C. Wang, T. George, and P. W. Li, “The pivotal role of SiO formation in the migration and Ostwald ripening of Ge quantum dots,” Appl. Phys. Lett., 105, 122102 (2014).
[121] C. Y. Chien, Y. J. Chang, K. H. Chen, W. T. Lai, T. George, A. Scherer, and P. W. Li, “Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots” Nanotechnology, 22, 435602 (2011).
[122] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors,” Appl. Phys. Lett., 56, 650 (1990).
[123] S. M. GadelRab and S. G. Chamberlain, “The source-gated amorphous silicon photo-transistor,” IEEE Trans. Electron Devices, 44, 1789 (1997).
[124] S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors:” Appl. Phys. Lett., 109, 053508 (2016).
[125] V. Sorianello, G. De Angelis, A. De Iacovo, L. Colace, S. Faralli, and M. Romagnoli, “High responsivity SiGe heterojunction phototransistor on silicon photonics platform,” Opt. Express, 23, 28163 (2015).
[126] H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small, 10, 2300 (2014).
[127] A. M. Pravilov, Radiometry in Modern Scientific Experiments (Springer, 2011).
[128] F. Prins, M. Buscema, J. S. Seldenthuis, S. Etaki, G. Buchs, M. Barkelid, V. Zwiller, Y. Gao, A. J. Houtepen, L. D. A. Siebbeles, and H. S. J. van der Zant, “Fast and efficient photodetection in nanoscale quantum-dot junctions,” Nano Lett., 12, 5740 (2012).
[129] S. Siontas, P. Liu, A. Zaslavsky, and D. Pacifici, “Noise performance of high-efficiency germanium quantum dot photodetectors,” Appl. Phys. Lett., 109, 053508 (2016).
指導教授 李佩雯 郭明庭(Pei-Wen Li David Ming-Ting Kuo) 審核日期 2018-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明