博碩士論文 103223001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.139.67.157
姓名 巫誠恩(Cheng-En Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 三維結構具官能基中孔洞材料於酵素固定及染料吸附之應用
(Functionalized Cubic Mesoporous Silica Nanoparticle Materials SBA-1 : Synthesis, Characterization and Applications in Enzyme Immobilization and Selective Dye Adsorption)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要分為兩部分,第一部分是利用陽離子型界面活性Hexadecyl pyridinium chloride (CPC) 以及陰離子型高分子Poly(acrylic acid) (PAA) 作為模板,合成擴孔且具羧酸官能基中孔洞材料,其簡稱為CS-1B-x、MP-CS-1B-x及LP-CS-1B-x,x = [CES/(CES+TEOS)],並將其應用於固定蛋白質的載體,固定的蛋白質為木瓜蛋白酶 (Papain)。結果顯示,擴孔及羧酸官能基含量提高皆有助於提高吸附量,且含有羧酸官能基之材料蛋白質固定效果較好,活性測試也顯示,吸附木瓜蛋白酶後一系列材料在35o C下也能保有木瓜蛋白酶良好之活性,並且在高溫下可保護木瓜蛋白酶使其不容易失活,並將吸附數據代入等溫吸附模型,發現Langmuir等溫吸附模式較其他等溫吸附模式更適合描述CS-1B-x吸附蛋白酶之系統,動力學則屬於Pseudo-second order之吸附過程,此外亦由分子內擴散模型之速率常數結果,驗證第二步驟之分子內擴散階段為吸附蛋白質之速率決定步驟。
第二部分同樣利用前面合成的CS-1B-0及CS-1B-40作為模板,利用後修飾法植入胺基,合成單純具胺基及同時具羧酸官能基及胺基中孔洞材料,其簡稱為NS-1B-10及CNS-1B-10-10,並將CS-1B-0、CS-1B-40、NS-1B-10及CNS-1B-10-10應用在選擇性染料吸附,實驗結果發現,CNS-1B-10-10在酸性條件下能利用材料中NH3+的官能基團,對陰離子染料Eosin Y (EY) 及 Eosin B (EB) 產生選擇性吸附之效果,在鹼性時能利用材料中COO-的官能基團,對陽離子染料Methylene Blue (MB) 產生選擇性吸附之效果,而CS-1B-40由於帶有羧酸官能基,在pH 3.0到pH 9.0間皆帶負電,因此對陽離子染料Methylene Blue (MB)可以產生選擇性吸附效果。
摘要(英) I have two parts in my study. In my first part, the well-ordered cubic mesoporous silicas CS-1B-x, MP-CS-1B-x, and LP-CS-1B-x (Pm3n) were synthesized successfully via co-condensation of tetraethyl orthosilicate (TEOS) and carboxyethylsilanetriol sodium salt (CES), also functionalized with different ratio of catboxylic groups and enlarge pore by 1,3,5-trimethylbenzene (TMB) under basic conditions, and using Hexadecyl pyridinium chloride (CPC) and Poly(acrylic acid) as template.
The CS-1B-x, MP-CS-1B-x, and LP-CS-1B-x were used as adsorbents for immobilization of papain. These processes were systematically studied by varing time, initial concentration and pH. The LP-CS-1B-40 showed an excellent adsorption capacity for 1138 mg papain per gram adsorbent and low leaching rate .
In my second part, the well-ordered cubic mesoporous silicas CNS-1B-10-10 (Pm3n) were synthesized successfully via co-condensation of tetraethyl orthosilicate (TEOS), (3-Aminopropyl) triethoxysilane (APTES) and carboxyethylsilanetriol sodium salt (CES) under basic conditions, and using Hexadecyl pyridinium chloride (CPC) and Poly(acrylic acid) as template.
The CNS-1B-10-10 were used as adsorbents for selective adsorption of positive and negative charge dyes in different pH. And the results show that CNS-1B-10-10 have well selectivity in acidic and basic condition. In acidic condition, CNS-1B-10-10 selectively adsorb negative dyes owing to NH3+ functional groups. In basic condition, CNS-1B-10-10 selectively adsorb positive dyes owing to COO- functional groups.
關鍵字(中) ★ 中孔洞材料
★ 蛋白質吸附
★ 選擇性染料吸附
關鍵字(英) ★ mesoporous silica
★ protein adsorption
★ selective dye adsorption
論文目次 中文摘要.....i
Abstract.....ii
謝誌.....iii
目錄.....iv
圖目錄.....ix
表目錄.....xv
第一章 序論.....1
1-1 中孔洞二氧化矽材料.....1
1-1-1 中孔洞材料之沿革.....1
1-1-2 中孔洞的定義.....2
1-2 界面活性劑性質簡介.....4
1-2-1 界面活性劑的種類.....4
1-2-2 微胞的形成與結構.....6
1-2-3 界面活性劑與矽氧化物的交互作用.....8
1-3 官能基化之中孔洞材料.....12
1-3-1 表面修飾官能基之中孔洞材料.....12
1-3-2 表面修飾羧酸官能基之中孔洞材料.....14
1-4 文獻回顧.....16
1-4-1 中孔洞材料SBA-1之合成與介紹.....16
1-4-2 以聚電解質及界面活性劑搭配合成之中孔洞材料.....17
1-4-3 . 中孔洞材料吸附蛋白質之發展及應用.....19
1-4-4 中孔洞材料吸附染料之發展及應用.....26
1-4-5 選擇性吸附染料之發展.....29
1-5 研究動機與目的.....31
第二章 序論.....32
2-1 藥品.....32
2-2 實驗步驟.....35
2-2-1 合成具羧酸官能基的中孔洞SBA-1 (CS-1B-x).....35
2-2-2 合成擴孔且具羧酸官能基的中孔洞SBA-1 (LP-CS-1B-x)..... 35
2-2-3 以硝酸溶液裂解孔洞中的模板.....36
2-2-4 蛋白質檢量線之製作.....36
2-2-5 材料CS-1B系列在不同反應時間下之蛋白質吸附實驗.....38
2-2-6 材料CS-1B系列在不同pH值下之蛋白質吸附實驗.....38
2-2-7 材料CS-1B-x在不同初始濃度之蛋白質吸附實驗.....39
2-2-8 溶菌酶活性測試實驗.....39
2-2-9 木瓜蛋白酶活性測試實驗.....40
2-2-10 水解酪蛋白動力學測試實驗.....40
2-2-11 不同溫度下木瓜蛋白酶活性測試實驗.....41
2-2-12 高溫下維持木瓜蛋白酶活性測試實驗.....41
2-2-13 不同pH值下木瓜蛋白酶活性測試實驗..... 42
2-2-14 蛋白質之釋放實驗.....43
2-2-15 選擇性蛋白質吸附 (Papain & Hemoglobin).....43
2-2-16 熱力學吸附實驗.....43
2-2-17 利用後修飾法植入胺基之SBA-1.....44
2-2-18 染料檢量線之製作.....44
2-2-19 四種材料在不同pH下之染料吸附實驗.....46
2-2-20 四種材料在在不同時間下對EY及MB染料吸附實驗.....46
2-2-21 . 四種材料在不同初始濃度對EY及MB染料吸附實驗.....46
2-2-22 四種材料在不同pH下選擇性染料吸附實驗 (MB & EY)..... 47
2-2-23 . 四種材料在不同pH下選擇性染料吸附實驗 (MB & EB)..... 47
2-2-24 CNS-1B-10-10在不同pH下重複使用性染料吸附實驗.....(MB & EY).....48
2-2-25 熱力學吸附實驗.....48
2-3 實驗設備.....49
2-3-1 實驗合成設備.....49
2-3-2 實驗鑑定儀器.....49
第三章 結果與討論.....51
3-1 CS-1B-x、MP-CS-1B-x及LP-CS-1B-x系列.....51
3-1-1 基本性質鑑定.....51
3-1-1.1 XRD繞射圖譜.....51
3-1-1.2 13C CP/MAS NMR.....54
3-1-1.3 29Si MAS NMR.....56
3-1-1.4 等溫氮氣吸脫附.....58
3-1-1.5 FT-IR 紅外線光譜.....61
3-1-1.6 熱重分析.....63
3-1-1.7 SEM影像.....64
3-1-1.8 TEM影像.....66
3-1-1.9 表面電位.....67
3-1-2 CS-1B-x系列之蛋白質吸附實驗.....70
3-1-2.1 不同反應時間吸附溶菌酶之效果.....71
3-1-2.2 不同初始濃度吸附溶菌酶之效果.....72
3-1-2.3 溶菌酶之活性測試實驗.....73
3-1-2.4 溶菌酶之釋放實驗.....74
3-1-3 中孔洞材料吸附溶菌酶後之性質鑑定.....75
3-1-3.1 等溫吸附模式.....75
3-1-3.2 溶菌酶吸附動力學探討.....85
3-1-3.3 吸附溶菌酶之分子內擴散模型之探討.....90
3-1-3.4 吸附溶菌酶之熱力學吸附探討.....94
3-1-4 擴孔之CS-1B-x系列之木瓜蛋白酶吸附實驗.....96
3-1-4.1 不同反應時間吸附木瓜蛋白質之效果.....96
3-1-4.2 木瓜蛋白酶初始濃度對中孔洞材料吸附之影響.....97
3-1-4.3 不同pH值下吸附木瓜蛋白酶之效果.....98
3-1-4.4 不同孔徑大小之材料對木瓜蛋白酶吸附的影響.....100
3-1-4.5 木瓜蛋白酶之活性測試實驗.....101
3-1-4.6 水解酪蛋白動力學測試實驗.....103
3-1-4.7 不同溫度下木瓜蛋白酶活性測試實驗.....104
3-1-4.8 高溫下維持木瓜蛋白酶活性測試實驗.....105
3-1-4.9 不同pH值下木瓜蛋白酶活性測試實驗.....106
3-1-4.10 木瓜蛋白酶之釋放實驗.....107
3-1-5 中孔洞材料吸附木瓜蛋白酶後之性質鑑定.....108
3-1-5.1 XRD繞射圖譜.....108
3-1-5.2 等溫氮氣吸脫附.....109
3-1-5.3 FT-IR紅外線光譜.....111
3-1-5.4 等溫吸附模式.....113
3-1-5.5 吸附木瓜蛋白酶之動力學探討.....120
3-1-5.6 吸附木瓜蛋白酶之分子內擴散模型之探討.....123
3-1-5.7 吸附木瓜蛋白酶之熱力學吸附探討.....127
3-1-6 選擇性蛋白質吸附 (Papain & Hemoglobin).....128
3-2 CS-1B、NS-1B及CNS-1B系列.....130
3-2-1 基本性質鑑定.....130
3-2-1.1 XRD繞射圖譜.....130
3-2-1.2 13C CP/MAS NMR.....131
3-2-1.3 29Si MAS NMR.....133
3-2-1.4 等溫氮氣吸脫附.....135
3-2-1.5 FT-IR紅外線光譜.....137
3-2-1.6 熱重分析.....139
3-2-1.7 SEM影像.....140
3-2-1.8 TEM影像.....141
3-2-1.9 表面電位.....142
3-2-2 四種材料之染料吸附實驗.....144
3-2-2.1 在不同pH下之8種染料吸附實驗.....144
3-2-2.2 不同吸附時間吸附染料之效果.....149
3-2-2.3 染料初始濃度對中孔洞材料吸附之影響.....150
3-2-2.4 選擇性染料吸附實驗 (MB & EY).....154
3-2-2.5 選擇性染料吸附實驗 (MB & EB).....156
3-2-2.6 重複使用性染料吸附實驗 (MB & EY).....158
3-2-3 中孔洞材料吸附染料之性質鑑定.....159
3-2-3.1 等溫吸附模式.....159
3-2-3.2 四種材料吸附染料之動力學探討.....166
3-2-3.3 吸附染料之分子內擴散模型之探討.....170
3-2-3.4 吸附染料之熱力學吸附探討.....175
第四章 結論.....177
第五章 參考文獻.....178
參考文獻 (1)J.-S. Beck, J.-C. Vartuli, W.-J. Roth, M.-E.Leonowicz, C.-T. Kresge, K.-D. Schmitt, C. T. W. Chu, D.-H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, 114, 10834-10843.
(2) C.-T. Kresge, M.-E. Leonowicz, W.-J. Roth, J.-C. Vartuli and J.-S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
(3) M.-W. Anderson, Simplified description of MCM-48, Zeolites, 1997, 19, 220-227.
(4) J.-C. Vartuli, C.-T. Kresge, W.-J. Roth, S.-B. McCullen, J.-S. Beck, K.-D. Schmitt, M.-E. Leonowicz, J.-D. Lutner Sheppard in Advanced Catalysts and Nanostructured Materials: Modern Synthesis Methods, Academic Press, New York, 1996, 1-19.
(5) Y.-J. Hao, Y.-Z. Chong, S.-R. Li and H.-Q. Yang, Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols, J. Phys. Chem. C., 2012, 116, 6512-6519
(6) C.-S. Chen, C.-C. Chen, C.-T. Chen and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun., 2011, 47, 2288-2290.
(7) H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J. R. Deka, S.-H. Liao and C.-W. Wu, Synthesis, bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids, Chem. Eur. J., 2013, 19, 6358-6367.
(8) Z. Yang, S.-Y. Tao, J.-X. Yin and G.-T. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, J. Mater. Chem., 2006, 16, 2347-2353.
(9) Y.-P. Zhai, Y.-Q. Dou, X.-X. Liu, B. Tu and D.-Y. Zhao, One-pot synthesis of magnetically separable ordered mesoporous carbon, J. Mater. Chem., 2009, 19, 3292-3300.
(10) T. Roussel, R. J. M. Pellenq, M. Bienfait, C. Vix-Guterl, R. Gadiou, F. Béguin and M. Johnson, Thermodynamic and neutron scattering study of hydrogen adsorption in two mesoporous ordered carbons, Langmuir, 2006, 22, 4614-4619.
(11) S.-M. Solberg and C.-C. Landry, Adsorption of DNA into mesoporous silica, J. Phys. Chem. B., 2006, 110, 15261-15268.
(12) Y.-C. Hu, Z.-Z. Zhi, Q.-F. Zhao, C. Wu, P. Zhao, H.-T. Jiang, T.-Y. Jiang and S.-L. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol, Microporous Mesoporous Mater., 2012, 147, 94-101.
(13) M.-S. Bhattacharyya, P. Hiwale, M. Piras, Luca Medda, D. Steri, M. Piludu, A. Salis and M. Monduzzi, Lysozyme adsorption and release from ordered mesoporous materials, J. Phys. Chem., 2010, 114, 19928-19934.
(14) Y. Wang and F. Caruso, Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation, Chem. Mater., 2005, 17, 953-961.
(15) J. Deere, E. Manger, J.-G. Wall and B.-K. Hodnett, Adsorption and activity of cytochrome c on mesoporous silica, Chem. Commun., 2001, 5, 465-465.
(16) Z. Zhou and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 3894-3912.
(17) L.-T. Gibson, Mesosilica materials and organic pollutant adsorption: part A removal from air, Chem. Soc. Rev., 2014, 43, 5163-5172.
(18) IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 57-57.
(19) D.-Y. Zhao, J.-L. Feng, Q.-S. Huo, N. Melosh, G.-H. Fredrickson, B.-F. Chmelka and G.-D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279, 548-552.
(20) N.-K. Raman, M.-T. Anderson and C.-J. Brinker, Template-based approaches to the preparation of amorphous nanoporous silicas, Chem. Mater., 1996, 8, 1682-1701.
(21) T.-A. Fayed, M.-H. Shaaban, M.-N. El-Nahass and F.-M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Bio. Sci., 2014, 1, 74-94.
(22) J.-N. Israelachvili, D.-J. Mitchell and B.-W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, Biochim. Biophys. Acta., 1977, 470, 185-210.
(23) A. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
(24) K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, Surfactants and polymers in aqueous solution, 2nd edition, Wiley, 2002, 1-562.
(25) D.-F. Evans‬, H. Wennerström‬, The Colloidal Domain, 2nd Ed.,1999, 1-632.‬‬‬
(26) Q.-S. Huo, D.-I. Margolese, U. Ciesla, P.-Y. Feng, T.-E. Gler, P. Sieger, R. Leon, P.-M. Petroff, F. Schuth and G.-D. Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368, 317-321.
(27) R.-K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Wiley, 1979, 1-896.
(28) C. J. Brinker and G. W. Scherer, Sol → gel → glass: I. Gelation and gel structure, J. Non Cryst. Solids, 1985, 70, 301-322.
(29) S.-H. Wu, C.-Y. Mou and H.-P. Lin, Chem. Soc. Rev., 2013, 42, 3862-3875.
(30) Z. Zhou and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 3894-3912.
(31) G. -J. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chem. Rev., 2002, 102, 4093-4138.
(32) C.-H. Lei, Y.-S. Shin, J. Liu and E.-J. Ackerman, Entrapping enzyme in a functionalized nanoporous support, J. Am. Chem. Soc., 2002, 124, 11242-11243.
(33) N. Liu, R.-A. Assink and C.-J. Brinker, Synthesis and characterization of highly ordered mesoporous thin films with –COOH terminated pore surfaces, Chem. Commun. 2003, 3, 370-371.
(34) C.-M. Yang, B. Zibrowius and F. Schüth, A novel route for negatively charged ordered mesoporous silica SBA-15, Chem. Commun., 2003, 14, 1772-1773.
(35) C.-M. yang, Y. Wang, B. Zibrowius and F. Schüth, Phys. Chem. Chem. Phys., 2004, 6, 2461-2467.
(36) H. -P. Yiu and P. -A. Wright, Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid, J. Mater. Chem., 2005, 15, 3690-3700.
(37) J. -M. Rosenholm and M. Lindén, Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications, J. Control Release, 2008, 128, 157-164.
(38) C.-T. Tsai, Y.-C. Pan, C.-C. Ting, S. Vetrivel, A. S. T. Chiang, G.-T. K. Fey and H.-M. Kao, A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups, Chem. Commun., 2009, 33, 5018-5020.
(39) D. Saikia, Y.-Y. Huang, C.-E. Wu and H.-M. Kao, Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol, RSC Adv., 2016, 6, 35167-35176.
(40) W.-C. Chang, J. R. Deka, H.-Y. Wub, F.-K. Shieha, S.-Y. Huanga and H.-M. Kao, Synthesis and characterization of large pore cubic mesoporous silicasfunctionalized with high contents of carboxylic acid groups and their use as adsorbents, Appl. Catal., B, 2013, 142-143, 817-827.
(41) J. R. Deka, D. Saikia, Y.-S. Lai, C.-H. Tsai, W.-C. Chang and H.-M. Kao, Roles of nanostructures and carboxylic acid functionalization of ordered cubic mesoporous silicas in lysozyme immobilization, Microporous Mesoporous Mater., 2015, 213, 150-160.
(42) Q. Huo, D. I. Margolese, U. Ciesla, P. Feng,T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, and G. D. Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature. 1994, 368, 317-321.
(43) M. J. Kim and R. Ryoo, Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1, Chem. Mater. 1999, 11, 487-491.
(44) Y. Sakamoto, M. Kaneda, O. Terasaki, D.-Y. Zhao, J.-M. Kim, G. Stuckyk, H.-J. Shin and R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature, 2000, 408, 449-453.
(45) M. Antonietti, S. Henke and A. Thiinemann, Highly Ordered Materials with ultra-Low Surface Energies: Polyelectrolyte-Surfactant Complexes with Fluorinated Surfactants, Adv. Mater. 1996, 8, 41-45.
(46) M. Antonietti, J. Conrad and A. Thunemann, Polyelectrolyte-Surfactant Complexes: A New Type of Solid, Mesomorphous Material, Macromolecules, 1994, 27, 6007-6011.
(47) B. Yang and K.- J. Edler, Free-Standing Ordered Mesoporous Silica Films Synthesized with Surfactant-Polyelectrolyte Complexes at the Air/Water Interface, Chem. Mater. 2009, 21, 1221-1231.
(48) C.-C. Pantazis and P.-J. Pomonis, Mesostructure Design via Poly (acrylic acid)-CnTAB Complexes: A New Route for SBA-1 Mesoporous Silica, Chem. Mater. 2003, 15, 2299-2300.
(49) Z. Zhou and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 3894-3912.
(50) Z. Wu and D.-Y. Zhao, Ordered mesoporous materials as adsorbents, Chem. Commun., 2011, 47, 3332-3338.
(51) D. Jung and M. Hartmann, Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends, J. Mater. Chem., 2010, 20, 844-857.
(52) Http://goo.gl/8ZWXZT , Lysozyme
(53) W. Bian, L.-L. Lou, B.-Y. Yan, C. Zhang, S.-M. Wu, S.-X. Liu, Immobilization of papain by carboxyl-modified SBA-15: Rechecking the carboxyl after excluding the contribution of H2SO4 treatment, Microporous Mesoporous Mater., 2011, 143, 341-347.
(54) S. Solís, J. Paniagua, J. C. Martínez and M. Asomoza, Immobilization of papain on mesoporous silica: pH effect, J. Sol-Gel Sci. Techn., 2006, 37, 125-127.
(55) A. Vinu, N. Gokulakrishnan, V.-V. Balasubramanian, S. Alam, M.-P. Kapoor, K. Ariga and T. Mori, Three-Dimensional Ultralarge-Pore Ia3d Mesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization, Chem. Eur. J. 2008, 14, 11529-11538.
(56) B. Zhao, B. Shi and R. Ma, Immobilization of Papain on the Mesoporous Molecular Sieve MCM-48, Eng. Life Sci, 2005, 5, 436-441.
(57) K.-Y. Ho, G. McKay and K.-L. Yeung, Selective adsorbents from ordered mesoporous silica, Langmuir, 2003, 19, 3019-3024.
(58) M.-M. Mohamed, Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk, J. Colloid Interface Sci., 2004, 272, 28-34.
(59) Z. Yan, G. Li, L. Mu and S. Tao, Pyridine-functionalized mesoporous silica as an efficient adsorbent for the removal of acid dyestuffs, J. Mater. Chem, 2006, 16, 1717-1725.
(60) N.-M. Mahmoodi, S. Khorramfar, and F. Najafi, Amine-functionalized silica nanoparticle: Preparation, characterization and anionic dye removal ability, Desalination, 2011, 279, 61-68.
(61) J. R. Deka, C.-L. Liu, T.-H. Wang, W.-C. Chang and H.-M. Kao, Synthesis of highly phosphonic acid functionalized benzene-bridgedperiodic mesoporous organosilicas for use as efficient dye adsorbents, J. Hazar. Mater., 2014, 278, 539-550.
(62) C.-H. Tsai, W.-C. Chang, D. Saikia, C.-E. Wu and H.-M. Kao, Functionalization of cubic mesoporous silica SBA-16 with carboxylicacid via one-pot synthesis route for effective removal of cationic dyes, J. Hazar. Mater., 2016, 309, 236-248.
(63) C. Sarkar, C. Bora and S.-K. Dolui, Selective Dye Adsorption by pH Modulation on Amine-Functionalized Reduced Graphene Oxide−Carbon Nanotube Hybrid, Ind. Eng. Chem. Res., 2014, 53, 16148-16155.
(64) Y.-X. Tan, Y.-P. He, M. Wang and J. Zhang, A water-stable zeolite-like metal–organic framework for selective separation of organic dyes, RSC Adv., 2014, 4, 1480-1483.
(65) N. Cheng, Q. Hu, Y. Guo, Y. Wang and L. Yu, Efficient and Selective Removal of Dyes Using Imidazolium-Based Supramolecular Gels, ACS Appl. Mater. Interfaces 2015, 7, 10258-10265.
(66) N. Li, J.-G. Wang, H.-J. Zhou, P.-C. Sun and T.-H. Chen, Synthesis of Single-Crystal-Like, Hierarchically Nanoporous Silica and Periodic Mesoporous Organosilica, Using Polyelectrolyte-Surfactant Mesomorphous Complexes as a Template, Chem. Mater, 2011, 23, 4241–4249.
(67) J. Xu, W. Liu, Y. Yu, J. Du, N. Li and L. Xu, Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization, RSC Adv., 2014, 4, 37470–37478.
(68) A. Vinu, M. Miyahara and K. Ariga, Biomaterial immobilization in nanoporous carbon molecular sieves: influence of pH, pore volume, and diameter, J. Phys. Chem. B, 2005, 109, 6436-6441.
(69) L. Sun, H. Liang, Q. Yuan, T. Wang and H. Zhang, Study on a carboxyl-activated carrier and its properties for papain immobilization, J. Chem. Technol. Biotechnol., 2012, 87, 1083-1088.
(70) Q.-L. Hong, Y.-H. Dong, W. Zhuang, C. Rao and C. Liu, Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide, Acta Phys. Chim. Sin. 2016, 32, 638-646.
(71) M. Colilla, I.-I. Barba, S.-S. Salcedo, J.-L.-G. Fierro, J.-L. Hueso and M.-V. Regi, Synthesis and Characterization of Zwitterionic SBA-15 Nanostructured Materials, Chem. Mater., 2010, 22, 6459–6466.
(72) A. Dada, A. Olalekan, A.-M. Olatunya and DADA, Langmuir, Freundlich,
Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 2012, 3, 38-45.
(73) Q.-Lan, A.-S. Bassi, J.-X. Zhu and A. Margaritis, A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents, J. Chem. Eng., 2001, 81, 179-186.
(74) T.-X. Bui and H. Choi, Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15, J. Hazar. Mater., 2009, 168, 602-608.
(75) G.-W. Lim, J.-K. Lim, A.-L. Ahmad and D.-J.-C. Chan, Influences of diatom frustule morphologies on protein adsorption behavior, J. Appl. Phycol., 2015 27, 763-775.
(76) S. Schlienger, A.-L. Graff, A. Celzardb and J. Parmentier, Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor, Green Chem., 2012, 14, 313-316.
(77) D.-J. O′Shannessy and D.-J. Winzor, Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology, Anal Biochem., 1996, 2, 275-283.
(78) T.-P.-B. Nguyen, J.-W. Lee, W.-G. Shim and H. Moon, Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA, Microporous Mesoporous Mater., 2008, 110, 560-569.
(79) Y.-S. Ho and G. McKAY, A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents, Trans. IChemE, 1998, 76, 332-340.
(80) M.-J Hwang, O.-H. Kim, W.-G. Shim and H. Moon, Adsorption of BSA on monodispersed hollow silica nanospheres, Microporous Mesoporous Mater., 2013, 182, 81-86.
(81) M.-N. Sarvi, T.-B. Bee, C.-K. Gooi, B.-W. Woonton, M.-L. Gee and A.-J.
O’Connor, Development of functionalized mesoporous silica for adsorption and separation of diary proteins, Chem. Eng. J., 2014, 235, 244-251.
(82) B.-H. Hameeda and M.-I. El-Khaiaryb, Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling, J. Hazar. Mater., 2008, 159, 574-579.
(83) Y.-H. Wu, M.-L, Zhang, H.-Y. Zhao, S.-X. Yang and A. Arkin, Functionalized mesoporous silica material and anionic dye adsorption: MCM-41 incorporated with amine groups for competitive adsorption of Acid Fuchsine and Acid Orange II, RSC Adv., 2014, 4, 61256-61267.
(84) N. Shi, B.-J. Gao and Q. Yang, Adsorption Characteristics of Bovine Serum Albumin on Cationic Grafted Particles QPDMAEMA/SiO2 with Brush Structure, Acta Phys. -Chim. Sin., 2014, 30, 2168-2176.
(85) W. Plazinski, W. Rudzinski and A. Plazinska, Theoretical models of sorption kinetics including a surface reaction mechanism: A review, Adv. Colloid Interface Sci., 2009, 152, 2-13.
(86) M.-A Salam and R.-C. Burk, Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multi-walled carbon nanotubes, Appl. Surf. Sci., 2008, 255, 1975-1981.
(87) C.-Y. Kuo, C.-H. Wu and J.-Y. Wuc, Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters, J. Colloid Interface Sci., 2008, 327, 308-315.
(88) F. Cuoq, A. Masion, J. Labille, J. Rose, F. Ziarelli, B. Prelot and J. Bottero, Preparation of amino-functionalized silica in aqueous conditions, Appl. Surf. Sci., 2013, 266, 155-160.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2016-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明