以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:33 、訪客IP:3.144.41.200
姓名 陳映維(Ying-Wei Chen) 查詢紙本館藏 畢業系所 化學學系 論文名稱 尋找染料敏化太陽能電池用之藍色染料 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 由於全球暖化危機,尋找好的再生能源是目前非常重要的議題,而取之不盡、用之不竭、乾淨且少污染的太陽能是目前最被看好的能源之一。染料敏化太陽能電池 (Dye-Sensitized Solar Cells, DSC)由於具有半透光性、多色彩性、可撓曲性與低製造成本等優點,是目前相當熱門的研究領域之一。本論文研究重點是設計出藍色染料,因此藉由thienoisoindigo單元作為有機染料D-Aa-?-A結構中的輔助拉電子基(Aa),搭配推電子基triphenylamine、carbazole及fluorene,來調整染料的能隙,設計出TIID-1、TIID-3及TIID-5染料,其中TIID-1及TIID-3的donor推電子能力較TIID-5強,因此最大吸收波長較紅位移,落在紅光範圍(625~740 nm),所以為綠色染料;TIID-5的最大吸收波長是608 nm,雖然是落在橘光範圍(590~625 nm) ,但紅光範圍仍然有強的吸收,所以染料為藍綠色;接著將不對稱結構的TIID-5染料,做反向結構得到TIID-6染料,HOMO及LUMO能階都下降,且最大吸收波長藍位移至601 nm,但在紅光範圍仍然有吸收,所以染料同樣是藍綠色;另外將TIID-5染料的固著配位基cyanoacrylic acid換成COOH,得到TIID-11染料,LUMO能階有提高且最大吸收波長藍位移至606 nm,但染料顏色仍然為藍綠色。TIID系列染料在藍光區段(440~485 nm)都有強的吸收,因此藍色不明顯,且這系列染料的LUMO能階與TiO2傳導帶能階的能階差都不足0.3 eV,因此組裝成元件後的Jsc值都不大,但是經過電解質的優化,其中有最高LUMO能階 (-0.62 vs NHE) 的TIID-1染料,有最大的光電轉換效率為3.26%。 摘要(英) Searching for affordable renewable energy is one of the currently important activities due to the global warming issue. Solar energy is one of the most promising renewable energy sources because it is inexhaustible, clean and less pollution. Dye-sensitized solar cells (DSC) which can convert solar energy into electrical energy, is one of the new generation solar cells under extensive studies. Dye molecules are the source for the photocurrent of DSC. They also affect the power conversion efficiency and stability of the corresponding devices. In this thesis, we focus on the synthesis of blue dyes for DSC. Thienoisoindigo unit was used as auxiliary acceptor (Aa) in a Donor-Auxiliary acceptor-π bridge-Acceptor type dye molecules. Triphenylamine, carbazole and fluorene were used as donor for tuning the molecular’s energy gap to obtain TIID-1, TIID-3 and TIID-5 dyes. Triphenylamine has stronger electron-donating ability than the other two donors, therefore TIID-1 has higher HOMO level and smaller band gap than the other two dyes. The absorption maximum of TIID-1, TIID-3 and TIID-5 are at 650, 632 and 608 nm, respectively. The absorption maximum of TIID-1 and TIID-3 falls on the wavelength of 625~740 nm, therefore are green dyes. The absorption maximum of TIID-5 is 590~625 nm, shows blue green color. TIID-6 is the inverted donor and acceptor poitions related to TIID-5, having lower HOMO and LUMO levels compared to TIID-5 with the absorption maximum blue-shifts to 601 nm. Since TIID-6 still has strong absorption at red-light range, therefore is blue green color. The cyanoacrylic acid in TIID-5 was replaced by carboxylic acid to form TIID-11. The absorption maximum of TIID-11 is 606 nm, also shows blue green. When these dyes were used as sensitizers for dye-sensitized solar cells (DSC), the maximum overall conversion efficiency of 3.26 % is achieved by TIID-1 dye. The lower photovoltaic performance of three dyes is due to the LUMO level is too low to inject the electron from the excited dye to TiO2 efficiently. 關鍵字(中) ★ 染料敏化太陽能電池
★ 藍色染料關鍵字(英) ★ DSC
★ Blue Dye論文目次 目錄
摘要 i
Abstract iii
圖目錄 ix
表目錄 xii
序論 1
1-1、前言 1
1-1、太陽能電池的種類 2
1-2、染料敏化太陽能電池 (Dye-sensitized solar cells, DSC) 3
1-4、光電轉換效率(η)的量測 4
1-4-1、模擬太陽光 4
1-4-2、IPCE(Incident Photon to current Conversion Efficiency) 6
1-4-3、總光電轉換效率 ( η ) 7
1-5、用於染料敏化太陽能電池中之光敏化劑的特性 8
1-5-1、釕金屬光敏化劑 8
1-5-2、有機染料介紹 11
1-6、光敏化劑的顏色 13
1-6-1、染料敏化太陽能電池的色彩 13
1-6-2、色彩學 14
1-6-3、以diketopyrrolopyrrole (DPP)為輔助拉電子基(Aa)所合成的D-Aa-π-A藍色染料 15
1-6-4、以[1,2,5]Thiadiazolo[3,4-c]pyridine (PT)為輔助拉電子基(Aa)所合成的D-Aa-π-π-A藍色染料 18
1-6-5、以isoindigo為拉電子基所合成的D-Aa-π-π-A藍色染料 20
1-6-6、以thieno[3,4-b]pyrazine為拉電子基所合成的D-Aa-π-A深藍色染料 21
1-7、研究動機 23
貳、實驗部分 28
2-1、實驗藥品 28
2-2、儀器分析與樣品製備 32
2-2-1、紫外光/可見光吸收光譜儀 (UV/Vis. Spectrometer) 32
儀器型號:Cary 300 Bio 32
2-2-2、核磁共振光譜儀 (Nuclear Magnetic Resonance) 32
儀器型號:Bruker 300 & Bruker 500 32
2-2-3、電化學測量裝置 (Electrochemical Measurement) 33
儀器型號:AUTOLABPGSTAT30 電位/電位儀 33
2-2-4、交流阻抗分析﹙Electrochemical-Impedance Analysis, EIS﹚ 34
儀器型號:ECO CHEMIE Autolab PGSTAT30 Potential Galvano- state with FRA 2 34
2-2-5、太陽光模擬器與元件I-V曲線量測系統 (Solar Simulator and I-V measuring system) 37
儀器型號:YSS-50A, Keithley 2400 37
2-2-6、太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficieny, IPCE measurement) 38
儀器型號:Enti-Tech QE-R3011 38
2-3、中間產物之結構與簡稱 39
2-4、推電子基單元的合成 51
2-4-1、TPA-B的合成如Scheme 2.1 51
2-4-2、Carbazole-B的合成如Scheme 2.2 52
2- 5、中心結構 (Br-TIID-P) 的合成如Scheme 2.3 55
2-6、有機染料合成 59
2-6-1、TIID-1染料分子的合成如Scheme 2.4 59
2-6-2、TIID-3染料分子合成如Scheme 2.5 61
2-6-3、TIID-5染料分子的合成如Scheme 2.6 63
2-6-4、TIID-6染料分子的合成如Scheme 2.7 65
2-6-5、TIID-11染料分子合成如Scheme 2.8 68
參、結果與討論 72
3-1、TIID-1, 3, 5, 6, 11 染料光學性質探討 72
3-2、TIID-1、TIID-3、TIID-5、TIID-6及TIID-11染料之分子吸收光譜的TD-DFT理論計算 75
3-3、TIID-1、TIID-3、TIID-5、TIID-6、TIID-11染料能階結構探討 86
3-4、以TIID-1, TIID-3, TIID-5, TIID-6, TIID-11染料所敏化之DSC元件的效能探討 89
3-5、以TIID-1、TIID-3、TIID-5、TIID-6及TIID-11染料所敏化之電池元件的電化學阻抗(Electrochemical impedance spectroscopy, EIS)分析 93
肆、結論 96
伍、參考文獻 98
附錄 102參考文獻 1. (a) Potočnik, J. “Renewable Energy Sources and the Realities of Setting an Energy Agenda”, Science 2007, 315, 810-811. (b) Service, R. F. “Solar Report Sets the Agenda”, Science 2005, 309, 549.
2. “Trends in Photovolatic Applications.Survey Report of Selected IEA Countries between 1992 and 2007”, IEA-PVPS 2008, T1-17.
3. Repins, I. M.; Romero, C., M.; Yan, Y.; Metzger, W.; Li, J.; Johnston, S.; Egaas, B.; DeHart, C.; Scharf, J.; McCandless, B. E.; Noufi, R. “Characterization of 19.9%-Efficient CIGS Absorbers” National Renewable Energy Laboratory 2008.
4. O′Regand, B.; Grätzel, M. “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 films”, Nature 1991, 353, 737 - 740.
5. Grätzel, M. “Photoelectrochemical Cells”, Nature 2001, 414, 338 - 344.
6.((a))https://teknologisurya.wordpress.com/dasar-teknologi-sel-surya/energi-surya/((b))https://www.folsomlabs.com/modeling/module/module_model
7. Wang, P.; Klein, C.; Moser, J. E.; Humphry-Baker, R.; Cevey-Ha, N. L.; Charvet, R.; Comte, P.; Zakeeruddin, S. M.; Grätzel, M. “Amphiphilic Ruthenium Sensitizer with 4,4’-Diphosphonic Acid-2,2’-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells”, J. Phys. Chem. B. 2004, 108, 17553-17559.
8. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. “Conversion of Light to Electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc. 1993, 115, 6382-6390.
9. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J. Am. Chem. Soc.2005, 127, 16835-16847.
10. Yongzhen Wu and Weihong Zhu. “Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances”, Chem. Soc. Rev. 2013, 42, 2039-2058.
11. Zhaoyang Yao; Min Zhang; Heng Wu; Lin Yang; Renzhi Li and Peng Wang. “Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells”, J. Am. Chem. Soc. 2015, 137, 3799-3802.
12. http://divisare.com/projects/260236-Richter-Dahl-Rocha-Associe-
s-architectes-EPFL-Quartier-Nord-SwissTech-Convention-Center-Ecublens/print.
13. Jun-Ho Yum; Thomas W.Holcombe; Yongjoo Kim; Kasparas Rakstys; Thomas Moehl; Joel Teuscher; Jared H. Delcamp; Mohammed K. Nazeeruddin and Michael Gra¨tzel. “Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore”, Sci Rep. 2013, 3, 2446.
14. Jiangyi Mao, Jiabao Yang, Joël Teuscher, Thomas Moehl, Chenyi Yi, Robin Humphry-Baker,Pascal Comte, Carole Grätzel, Jianli Hua, Shaik M. Zakeeruddin, He Tian, and Michael Grätzel.“Thiadiazolo[3,4-c]pyridine Acceptor Based Blue Sensitizers for High Efficiency Dye-Sensitized Solar Cells”, J. Phys. Chem. C. 2014, 118, 17090−17099
15. Romain Stalder, Dongping Xie, Ashraful Islam, Liyuan Han, John R. Reynolds, and Kirk S. Schanze.“Panchromatic Donor–Acceptor–Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications”, ACS Appl. Mater. Interfaces. 2014, 6, 8715−8722.
16. Jinhong Wu, Guangfeng Li, Lu Zhang, Gang Zhou and Zhong-Sheng Wang,“Energy level engineering of thieno[3,4-b]pyrazine based organic sensitizers for quasi-solid-state dyesensitized solar cells”, J. Mater. Chem. A. 2016, 4, 3342–3355.
17. Makoto Karakawa and Yoshio Aso. “ Narrow-optical-gap π-conjugated small molecules based on terminal isoindigo and thienoisoindigo acceptor units for photovoltaic application”, RSC Adv. 2013, 3, 16259–16263.
18. Longo, C.; Nogueira, A. F.; De Paoli, M.-A.; Cachet, H. “Solid-State and Flexible Dye-Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B. 2002, 106, 5925-5930.
19. Wang, Q.; Moser, J. E.; Grätzel, M. “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, J. Phys. Chem. B. 2005, 109, 14945-14953.
20. 李佳. “具長碳鏈釕金屬錯合物染料搭配鈷錯合物[Co(bpy)3]2+/3+應用於染料敏化太陽能電池”, 國立中央大學2014年碩士論文.
21. Funaki, T.; Otsuka, H.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Sayama, K.; Sugihara. H. “ New Class of NCS-free Cyclometalated Ruthenium(II) Complexes with 6-Phenylpyridine-2-carboxylate for Use as Near-Infrared Sensitizers in Dye-Sensitized Solar Cells”, Inorg. Chem. commun. 2014, 46, 137–139.指導教授 吳春桂(Chun-Guei Wu) 審核日期 2016-7-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare