博碩士論文 103226023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.143.4.96
姓名 曾貴聖(Gui-Sheng Zeng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用 2D-二硫化鉬作為矽基單晶鍺薄膜之蕭特基接面光檢 測器特性分析
(Characteristic analysis on the Schottky-junction photodetectors with the structure of 2D-molybdenum disulfide/germanium/silicon substrate)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 隨著自駕車、3D 感測、消費性電子產業的興起,紅外光檢測器市場需 求大幅提升,本論文主要研究為 2D-MoS2/單晶鍺薄膜/矽基結構之蕭特基 接面光檢測器以取代昂貴的 InGaAs 光檢測器,使 LiDAR 等紅外光檢測器 產品的生產成本得以大幅下降。
論文中分為三部分進行說明:(一) PVD 之磁控濺鍍法於矽基板成長單 晶鍺薄膜,透過製程參數的優化,由 XRD 與 TEM 等結果研究證實鍺薄膜 具有高度結晶且為(400)的結晶方向,最佳之樣品其 XRD 半高寬為 0.717°, 作為光檢測器之主動層;(二) 利用少量的前驅物與乘載氣體製作高品質的 單層直接能隙 2D-MoS2 薄膜,透過製程參數的優化,得到薄膜拉曼光譜∆k 為 19.97 cm-1 之 2D-MoS2 單層薄膜。PL 與吸收光譜量測證實 MoS2 為直接 能隙,TEM量測MoS2層間距為0.617 nm與理論非常地符合,並且成功轉 印單層 MoS2 至單晶鍺薄膜基板上,作為光檢測器之蕭特基接面的能障層; (三) 整合以上材料製作2D-MoS2/單晶鍺薄膜/矽基結構之蕭特基接面光檢 測器,量測元件證實指叉狀電極寬度縮小至3 μm時響應度獲得大幅度的提 升,並且於 2.5 V 時響應度最高達 0.22 A/W。
摘要(英) With the rise of autonomous vehicle, 3D sensing, and consumer electronics industries, the market demand for infrared photodetectors has increased significantly. In this research, the Schottky-junction photodetectors with the structure of 2D-molybdenum disulfide/germanium/ silicon substrate have been developed to replace the expensive InGaAs photodetectors to reduce the production cost of infrared photodetectors, LiDAR.
This research has been divided into three parts: (1). The single crystal germanium films were grown by using magnetron sputtering method on silicon substrates. Through the process optimization, the single crystalline germanium film has been achieved and confirmed by the results of XRD and TEM shown the crystallographic direction of (400). The best XRD full-width at half-maximum of the germanium film is 0.717°, which can be applied as the active layer of the photodetector. (2). The fabrication of high-quality monolayer MoS2 thin films with direct energy gap by using a small amount of precursors and carrier gas. Through the process optimization, the Raman spectrum Δk of the film was 19.97 cm-1, which confirmed that MoS2 was a monolayer film. PL and absorption spectroscopy measurements confirmed that MoS2 film is a direct bandgap material. The interlayer spacing of monolayer MoS2 measured by TEM is 0.617 nm, which is in good agreement with the theoretical thickness. And the monolayer MoS2 was successfully transferred to the single-crystal germanium substrates to be the energy barrier layer for the Schottky junction of the photodetector. (3). The integration of the above materials to fabricate the Schottky-junction photodetectors with the structure of 2D-molybdenum disulfide/germanium/ silicon substrate. The photodetector measurement results have confirmed that the photo-responsivity was greatly improved when the width of the interdigitated electrode was reduced to 3 μm, and the responsivity was up to 0.22 A/W at 2.5 V.
關鍵字(中) ★ 鍺薄膜
★ RF磁控濺鍍
★ MoS2薄膜
★ 光檢測器
關鍵字(英) ★ Ge films
★ RF magnetron sputtering
★ MoS2 films
★ photodetector
論文目次 第一章 緒論-------------------------------------------------------------------1
1-1 前言-----------------------------------------------------------------------1
1-2 研究動機------------------------------------------------------------------3
1-3 研究目的與方法-----------------------------------------------------------5
1-4 文獻回顧------------------------------------------------------------------6
1-5 論文架構-----------------------------------------------------------------12
參考文獻---------------------------------------------------------------------14
第二章 分析儀器--------------------------------------------------------------16
參考文獻--------------------------------------------------------------------22
第三章 矽基單晶鍺薄膜製備與量測--------------------------------------------23
3-1 簡介---------------------------------------------------------------------23
3-2 研究動機----------------------------------------------------------------25
3-3 基礎理論及文獻回顧-----------------------------------------------------28
3-3-1 電漿與濺鍍原理--------------------------------------------------------28
3-3-2 鍺晶體結構特性-------------------------------------------------------33
3-3-3 鍺材料電學特性-------------------------------------------------------37
3-3-4 鍺材料光學特性-------------------------------------------------------38
3-3-5 鍺薄膜製備方式及文獻回顧---------------------------------------------41
3-4 單晶鍺薄膜製程及量測---------------------------------------------------48
3-4-1 調變濺鍍靶材與基板之間的距離-----------------------------------------51
3-4-2 調變濺鍍功率---------------------------------------------------------55
3-4-3 調變基板端之製程溫度-------------------------------------------------60
3-4-4 調變抽氣速率---------------------------------------------------------63
3-4-5 調變製程氬氣流量-----------------------------------------------------68
3-4-6 調變基板載台之外加偏壓-----------------------------------------------70
3-4-7 調變氫氣流量----------------------------------------------------------75
3-4-8 最佳參數量測---------------------------------------------------------78
3-5 結論--------------------------------------------------------------------84
參考文獻--------------------------------------------------------------------86
第四章 高品質 MoS2 之二維材料製備與量測-----------------------------------91
4-1 簡介---------------------------------------------------------------------91
4-2 研究動機----------------------------------------------------------------93
4-3 基礎理論及文獻回顧-----------------------------------------------------95
4-3-1 化學氣相沈積原理-----------------------------------------------------95
4-3-2 二硫化鉬晶體結構特性-------------------------------------------------97
4-3-3 二硫化鉬電學特性----------------------------------------------------102
4-3-4 二硫化鉬光學特性----------------------------------------------------104
4-3-5 二硫化鉬製備方式文獻回顧--------------------------------------------106
4-4 二維材料製程及量測-----------------------------------------------------111
4-4-1 二階段二硫化鉬薄膜製程-----------------------------------------------111
4-4-2 一階段二硫化鉬薄膜製程----------------------------------------------116
4-4-2-1 調變氬氣流量-------------------------------------------------------118
4-4-2-2 根據 Zone 1 溫度,調變硫粉開始加熱時間---------------------------121
4-4-2-3 調變硫粉重量------------------------------------------------------123
4-4-2-4 調變 MoO3 粉重量-------------------------------------------------125
4-4-2-5 調變 MoS2 硫化溫度-----------------------------------------------128
4-4-2-6 基板平放,大面積均勻性探討---------------------------------------130
4-4-2-7 MoS2 轉印製程----------------------------------------------------134
4-5 結論-------------------------------------------------------------------142
參考文獻-------------------------------------------------------------------144
第五章 單晶鍺薄膜光檢測器元件製程及量測----------------------------------148
5-1 基礎理論---------------------------------------------------------------148
5-1-1 抗反射薄膜基礎理論---------------------------------------------------148
5-1-2 異質材料之歐姆接觸與蕭特基接觸-------------------------------------149
5-1-3 接面載子傳輸行為-----------------------------------------------------151
5-1-4 蕭特基光檢測器操作原理----------------------------------------------152
5-2 元件製程及量測---------------------------------------------------------153
5-2-1 抗反射薄膜設計與製程------------------------------------------------153
5-2-2 鍺薄膜光檢測器元件製程----------------------------------------------156
5-2-3 鍺薄膜光檢測器元件量測----------------------------------------------158
5-2-3-1 無/單層 MoS2 之鍺薄膜光檢測器量測(低阻)--------------------------158
5-2-3-2 不同矽基板之單層 MoS2 鍺薄膜光檢測器量測------------------------159
5-2-3-3 單層/雙層 MoS2 之鍺薄膜光檢測器量測(高阻)------------------------160
5-2-3-4 改變指電極寬度之鍺薄膜光檢測器量測(低阻)-------------------------162
5-3 結論-------------------------------------------------------------------163
參考文獻-------------------------------------------------------------------165
第六章 結論與未來展望------------------------------------------------------166
參考文獻 [1] 吳盈潔 “TrendForce 2021 紅外線感測市場趨勢-3D 感測、光達、SWIR
LED”ledinside (2020). 網址:https://m.ledinside.com.tw/node/view/37093.html
[2] 林志平 “應用於自駕車的光達(Lidar)” 科學月刊 (2017). 網址:
https://www.scimonth.com.tw/tw/article/show.aspx?num=1712&root=5&cat=6 &page=7
[3] Geoff Martin “High Performance SWIR Imaging Cameras” Raptor Photonics, Tech Note 07-20 / Rev 1.0.
[4] John E. Bowers and Alan Y. Liu “A Comparison of Four Approaches to Photonic Integration” Optical Fiber Communications Conference and Exhibition (OFC), (2017).
[5] Kateryna Kuzmenko, Peter Vines, Abderrahim Halimi, Robert J. Collins, Aurora Maccarone, Aongus McCarthy, Zoe M. Greener, Jarostaw Kirdoda, Derek C. S. Dumas, Lourdes Ferre Llin, Muhammad M. Mirza, Ross W. Millar, Douglas J. Paul, and Gerald S. Buller “3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors” OPTICS EXPRESS 28(2), pp.1330-1344 (2020).
[6] Hyun-Duk Yang, V. Janardhanam, Kyu-Hwan Shim, and Chel-Jong Choi “Effects of Interdigitated Platinum Finger Geometry on Spectral Response Characteristics of Germanium Metal-Semiconductor-Metal Photodetectors” JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 14(10), pp.7683- 7687 (2014).
[7] Makoto Miura, Junichi Fujikata, Masataka Noguchi, Daisuke Okamoto, Tsuyoshi Horikawa, and Yasuhiko Arakawa “Differential receivers with highly - uniform MSM Germanium photodetectors capped by SiGe layer” OPTICS EXPRESS 21(20), pp.23295-23306 (2013).
[8] M. Zumuukhorol, S. Boldbaatar, Kyu-Hwan Shim, Chel-Jong Choi, Z. Khurelbaatar, and Sung-Nam Lee “Variations of Dark and Photo Currents of Metal-Semiconductor-Metal Photodetectors Fabricated on Ge Epilayer Grown on Si Substrate Caused by the Dimension of Interdigitated Pt Finger Electrodes” Journal of the Korean Physical Society 74(7), pp.713-717 (2019).
[9] Guo-En Chang, Shao-Wei Chen, and H. H. Cheng “Tensile-strained Ge/SiGe quantum-well photodetectors on silicon substrates with extended infrared response” OPTICS EXPRESS 24(16), pp.17562-17571 (2016).
[10] Sandeep Kumar, Avijit Chatterjee, Shankar Kumar Selvaraja, and Sushobhan Avasthi “Two-Step Liquid Phase Crystallized Germanium-Based Photodetector for Near-Infrared Applications” IEEE SENSORS JOURNAL 20(9), pp.4660- 4666 (2020).
[11] Tarık Asar, and Süleyman Ozcelik “Barrier enhancement of Ge MSM IR photodetector with Ge layer optimization” SUPERLATTICES AND MICROSTRUCTURES 88, pp.685-694 (2015).

[1] Bragg Henry W., Bragg Lawrence W., G. Bell, and L.T.D. “X RAYS AND CRYSTAL STRUCTURE” p.228 (2021).
[2] I. B. Misirlioglu, S. P. Alpay, M. Aindow, and V. Nagarajan “Thermodynamic and electrostatic analysis of threading dislocations in epitaxial ferroelectric films” APPLIED PHYSICS LETTERS 88(10), 102906 (2006).
[3] Guang-Li Luo, Chih-Hsin Ko, Clement H. Wann, Cheng-Ting Chung, Zong- You Han, Chao-Ching Cheng, Chun-Yen Chang, Hau-Yu Lin, and Chao-Hsin Chien “Nearly Dislocation-free Ge/Si Heterostructures by Using Nanoscale Epitaxial Growth Method” PHYSICS PROCEDIA 25, pp.105-109 (2012).
[4] Weigen Chen, Jianxin Wang, Fu Wan, and Pinyi Wang “Review of optical fibre sensors for electrical equipment characteristic state parameters detection” HIGH VOLTAGE 4(4), pp.271-281 (2019).

[1] Hojun Yoon, Jennifer E. Granata, Peter Hebert, Richard R. King, Christopher M. Fetzer, Peter C. Colter, Kenneth M. Edmondson, Daniel Law, Geoffrey S. Kinsey, Dmitri D. Krut, James H. Ermer, Mark S. Gillanders, and Nasser H. Karam “Recent advances in high-efficiency III-V multi-junction solar cells for space applications: Ultra triple junction qualification” PROGRESS IN PHOTOVOLTAICS 13(2), pp.133-139 (2005).
[2] Dong Wang, Takayuki Maekura, Sho Kamezawa, Keisuke Yamamoto, and Hiroshi Nakashima “Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure” APPLIED PHYSICS LETTERS 106(7), 071102 (2015).
[3] Seek Thermal “What is Thermal Imaging?” (2019). 網 址 :
https://support.thermal.com/hc/en-us/articles/115001285630--So-what-makes-it- TIC-
[4] Mordor Intelligence “IR Camera Market - Growth, Trends, COVID-19 Impact,
And Forecasts (2022 - 2027)” 網址:https://mordorintelligence.com/industry-
reports/ir-camera-market
[5] Kelsey A.W. Horowitz, Michael Woodhouse, Hohyun Lee, and Greg Smestad “A bottom-up cost analysis of a high concentration PV module” AIP Conf. Proc. 1679, 100001 (2015).
[6] Lorenzo Colace, and Gaetano Assanto “Germanium on Silicon for Near- Infrared Light Sensing” IEEE PHOTONICS JOURNAL 1(2), pp.69-79 (2009). [7] Abderraouf Boucherif, Guillaume Beaudin, Vincent Aimez, and Richard Arès “Mesoporous germanium morphology transformation for lift-off process and substrate re-use” APPLIED PHYSICS LETTERS 102(1), 011915 (2013).
[8] Yuji Yamamoto, Peter Zaumseil, Tzanimir Arguirov, Martin Kittler, and Bernd Tillack “Low threading dislocation density Ge deposited on Si (100) using RPCVD” SOLID-STATE ELECTRONICS 60(1), pp.2-6 (2011).
[9] Chan-Yu Liao, Shih-Hung Chen, Wen-Hsien Huang, Chang-Hong Shen, Jia- Min Shieh, and Huang-Chung Cheng “High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization” IEEE ELECTRON DEVICE LETTERS 39(3), pp.367-370 (2018).
[10] Nico Tucher “Analysis of Photonic Structures for Silicon Solar Cells” Fraunhofer Institute for Solar Energy Systems ISE (2017). ISBN 978-3-8396-1198-2
[11] R. G. Greaves, M. D. Tinkle, and C. M. Surko “CREATION AND USES OF POSITRON PLASMAS” PHYSICS OF PLASMAS 1(5), pp.1439-1446 (1994). [12] Kip Thorne "Chapter 20: The Particle Kinetics of Plasma” Applications of Classical Physics, Chapter 20 (2017).
[13] Lyu, Ling-Hsiao “Lecture 3 Characteristic Length in Plasma” 網址: http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/Lyu_IPP_Notes/IPP1_Lecture_3
.pdf
[14] 徐逸明, 游閔盛, 郭有斌, 黃傑, 洪昭南 “常壓電漿原理、技術與應用”
網 址 : http://creating-nanotech.com/cn/technology/download/article/.-public- uploads-post-article-20110520145713437_0.pdf
[15] 李正中 “薄膜光學與鍍膜技術” 藝軒圖書出版社 第九版, (2020). ISBN 978-986-394-029-6
[16] 林威廷 “硒化銅銦鎵薄膜缺陷對太陽能電池元件特性之影響” 國立中 央大學博士論文 (2014).
[17] Lieberman Michael A., and Lichtenberg, Allan J. “Principles of Plasma Discharges and Materials Processing” Wiley Interscience 2nd Edition, (2005). ISBN 0-471-72001-1
[18] 曾少澤 “表面粗化技術對矽基異質接面薄膜太陽能電池元件之研究” 國立中央大學博士論文 (2014).
[19] Peter A. Sturrock “Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical & Laboratory Plasmas” Cambridge University Press (1994). ISBN 978-0-521-44810-9
[20] Los Alamos National Laboratory “Germanium” 網 址 :
https://periodic.lanl.gov/32.shtml
[21] P. Binetruy, R. Schaeffer, J. Silk, and F. David “The Primordial Universe” Springer (1999). ISBN 3540410465
[22] Ben G. Streetman “Solid State Electronic Devices (Prentice Hall series in solid state physical electronics)” Prentice Hall, New ed of 3 Revised ed edition,(2010). ISBN 0138229414
[23] A.W. Bett, F. Dimroth, G. Stollwerck, and O.V. Sulima “III-V compounds for solar cell applications” APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 69(2), pp.119-129 (1999).
[24] Peter Ashburn “SiGe Heterojunction Bipolar Transistors” John Wiley & Sons (2003). ISBN 0470848383
[25] Hsiang Wei Chiu, Christopher N. Chervin, and Susan M. Kauzlarich “Phase changes in Ge nanoparticles” CHEMISTRY OF MATERIALS 17(19), pp.4858- 4864 (2005).
[26] UniversityWafer, Inc. “Which Silicon Orientation is the Best Option for
Semiconductor Fabrication?” 網址:https://www.universitywafer.com/silicon-
orientation.html
[27] Ziheng Liu, Xiaojing Hao, Anita Ho-Baillie, Chao-yang Tsao, and Martin A. Green “Cyclic thermal annealing on Ge/Si(100) epitaxial films grown by magnetron sputtering” THIN SOLID FILMS 574, pp.99-102 (2015).
[28] D. Rouchon, M. Mermoux, F. Bertin, and J.M. Hartmann “Germanium content and strain in Si1-xGex alloys characterized by Raman spectroscopy” JOURNAL OF CRYSTAL GROWTH 392, pp.66-73 (2014).
[29] Adel S. Sedra “Microelectronic Circuits (Oxford Series in Electrical & Computer Engineering)” Oxford University Press 6th (2009). ISBN 0195323033
[30] Virginia Semiconductor “The General Properties of Si, Ge, SiGe, SiO2 and Si3N4” (2002).
[31] Ove Christensen “Quantum efficiency of the internal photoelectric effect in silicon and germanium” JOURNAL OF PHYSICS APPLIED PHYSICS 47(689), pp.689-695 (1976).
[32] Vincent E Houtsma “Gate Oxide Reliability of Poly-Si and Poly-SiGe CMOS devices” Universiteit Twente (2000). ISBN 903651391X
[33] Zhihong Huang “Germanium photodetector integrated with silicon-based optical receivers” The University of Texas at Austin (2006).
[34] Arkadiusz Ciesielski, Lukasz Skowronski, Wojciech Pacuski, and Tomasz Szoplika “Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver” MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING 81, pp.64-67 (2018).
[35] C. G. Littlejohns, A. Z. Khokhar, D. J. Thomson, Y. Hu, L. Basset, S. A. Reynolds, G. Z. Mashanovich, G. T. Reed, and F. Y. Gardes “Ge-on-Si Plasma- Enhanced Chemical Vapor Deposition for Low-Cost Photodetectors” IEEEPHOTONICS JOURNAL 7(4), 6802408 (2015).
[36] Wei-Cheng Kuo, Chao-Yu Lin, Chien-Chieh Lee, Chao-Chia Cheng, and Jenq-Yang Chang “Strain-Controlled of Compressive/Tensile Ge Epilayers on Si by Electron Cyclotron Resonance Chemical Vapor Deposition” ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY 5(9), pp.P529-P533 (2016). [37] Vito Sorianello, Lorenzo Colace, Nicola Armani, Francesca Rossi, Claudio Ferrari, Laura Lazzarini, and Gaetano Assanto “Low-temperature germanium thin films on silicon” OPTICAL MATERIALS EXPRESS 1(5), pp.856-865 (2011). [38] Takahiro Tsukamoto, Nobumitsu Hirose, Akifumi Kasamatsu, Takashi Mimura, Toshiaki Matsui, and Yoshiyuki Suda “Control of surface flatness of Ge layers directly grown on Si (001) substrates by DC sputter epitaxy method” THIN SOLID FILMS 592, pp.34-38 (2015).
[39] Ziheng Liu, Xiaojing Hao, Jialiang Huang, Wei Li, Anita Ho-Baillie, and Martin A. Green “Diode laser annealing on Ge/Si (100) epitaxial films grown by magnetron sputtering” THIN SOLID FILMS 609, pp.49-52 (2016).
[40] Lian Wei, Yi Miao, Yuanfeng Ding, Chen Li, Hong Lu, and Yan-Feng Chen “Ultra high hole mobility in Ge films grown directly on Si (100) through interface modulation” JOURNAL OF CRYSTAL GROWTH 548, 125838 (2020).
[41] Tung Ming Pan, Tan Fu Lei, Tien Sheng Chao, Ming Chi Liaw, Fu Hsiang Ko, and Chih Peng Lu “One-Step Cleaning Solution to Replace the Conventional RCA Two-Step Cleaning Recipe for Pregate Oxide Cleaning” JOURNAL OF THE ELECTROCHEMICAL SOCIETY 148(6), pp.G315-G320 (2001).
[42] Mean free path “Kinetic theory of gases” 網 址 :
https://en.wikipedia.org/wiki/Mean_free_path
[43] Junqing Lu, and Mark Kushner “SPUTTER-WIND HEATING IN IONIZED METAL PVD+” University of Illinois at Urbana-Champaign (1999).
[44] A.C. Xenoulis, P. Trouposkiadis, C. Potiriadis, C. Papastaikoudis, A. A. Katsanos, and A. Clouvas “Sputtering rates and nanoscale cluster production in a hollow-cathode apparatus” NANOSTRUCTURED MATERIALS 7(5), pp.473- 486 (1996).
[45] Andrew H. Simon “Handbook of Thin Film Deposition” pp.383-392 (2012). [46] R. POWELL, and S. M. ROSSNAGEL “Chapter 2 Physics of sputtering” THIN FILMS 26, pp.23-49 (1999).
[47] V.I. Shulga “Depth-dependent angular distribution of sputtered atoms” NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS 155(4), pp.382-394 (1999).
[48] John A. Thornton “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings” JOURNAL OF VACUUM SCIENCE & TECHNOLOGY 11(666), pp.666-670 (1974).
[49] HARUO YOKOMICHI, and KAZUO MORIGAKI “Evidence for existence of hydrogen-related dangling bonds in hydrogenated amorphous silicon” PHILOSOPHICAL MAGAZINE LETTERS 73(5), pp.283-287 (1996).
[50] W. Beyer, J. Herion, H. Wagner, and U. Zastrow “Hydrogen stability in amorphous germanium films” PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES 63(1), pp.269-279 (1991).
[51] Kenjiro Nakamura, Kunihiko Yoshino, Shinya Takeoka, and Isamu Shimizu “Roles of Atomic Hydrogen in Chemical Annealing” JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS 34(2A), pp.442-449 (1995).
[52] Gui-Sheng Zeng, Chi-Lung Liu, and Sheng-Hui Chen “Effect of Substrate Biasing on the Epitaxial Growth and Structural Properties of RF Magnetron Sputtered Germanium Buffer Layer on Silicon" COATINGS 11(9), 1060 (2021). [53] Dongwoo Suh, Sanghoon Kim, Jiho Joo, and Gyungock Kim “36-GHz High- Responsivity Ge Photodetectors Grown by RPCVD” IEEE PHOTONICS TECHNOLOGY LETTERS 21(9-12), pp.672-674 (2009).

[1] Hua Zhang “Ultrathin Two-Dimensional Nanomaterials” ACS NANO 9(10), pp.9451-9469 (2015).
[2] Geim, A. K., and Novoselov, K. S. “The rise of graphene” Nature Materials 6(3), pp.183–191 (2007).
[3] Gwangwoo Kim, A-Rang Jang, Hu Young Jeong, Zonghoon Lee, Dae Joon Kang, and Hyeon Suk Shin “Growth of High-Crystalline, Single-Layer Hexagonal Boron Nitride on Recyclable Platinum Foil” NANO LETTERS 13(4), pp.1834-1839 (2013).
[4] Oriol Lopez-Sanchez, Dominik Lembke, Metin Kayci, Aleksandra Radenovic, and Andras Kis “Ultrasensitive photodetectors based on monolayer MoS2” NATURE NANOTECHNOLOGY 8(7), pp.497-501 (2013).
[5] Novoselov K. S., Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, and Firsov AA “Electric Field Effect in Atomically Thin Carbon Films” SCIENCE 306(5696), pp.666–669 (2004).
[6] Gianluca Fiori, Francesco Bonaccorso, Giuseppe Iannaccone, Tomás Palacios, Daniel Neumaier, Alan Seabaugh, Sanjay K. Banerjee and Luigi Colombo “Electronics based on two-dimensional materials” NATURE NANOTECHNOLOGY 9(10), pp.768-779 (2014).
[7] Patrick Vogt “Silicene, germanene and other group IV 2D materials” BEILSTEIN JOURNAL OF NANOTECHNOLOGY 9, pp.2665-2667 (2018).
[8] 李明洋, 李連忠, 張文豪 “二維過渡金屬二硫族化物平面異質結構” 自 然科學簡訊 28(1), pp.16-19 (2016).
[9] Hiroki Ago, Yui Ogawa, Masaharu Tsuji, Seigi Mizuno, and Hiroki Hibino “Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene” JOURNAL OF PHYSICAL CHEMISTRY LETTERS 3(16), pp.2228-2236 (2012).
[10] Chong-Rong Wu, Xiang-Rui Chang, Chao-Hsin Wu, and Shih-Yen Lin “The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre- deposited Transition Metals and the 2D Crystal Hetero-structure Establishment” SCIENTIFIC REPORTS 7, 42146 (2017).
[11] Jianyi Chen, Wei Tang, Bingbing Tian, Bo Liu, Xiaoxu Zhao, Yanpeng Liu, Tianhua Ren, Wei Liu, Dechao Geng, Hu Young Jeong, Hyeon Suk Shin, Wu Zhou, and Kian Ping Loh “Chemical Vapor Deposition of High-Quality Large-Sized MoS2 Crystals on Silicon Dioxide Substrates” ADVANCED SCIENCE 3(8), 1600033 (2016).
[12] 王志明 “鍍膜技術實務” CHENG SHIU UNIVERSITY.
[13] 蕭宏 “半導體製程技術導論” 全華圖書 第三版, (2014).
[14] 劉柏村 “薄膜沈積製程技術” 國立陽明交通大學光電工程學系/顯示科
技研究所.
[15] Erwin Kessels “Atomic Layer Deposition(ALD)” Eindhoven University of Technology.
[16] Joseph W. Haus “Fundamentals and Applications of Nanophotonics” Woodhead Publishing (2016). ISBN 9781782424642
[17] Sang A Han, Ravi Bhatia, and Sang-Woo Kim “Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides” NANO CONVERGENCE 2, 17 (2015).
[18] Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh, and Hua Zhang “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets” NATURE CHEMISTRY 5(4), pp.263-275 (2013). [19] Agnieszka Kuc “Low-dimensional transition-metal dichalcogenides” Chem. Modell. 11(1-29), pp.1-29 (2014).
[20] Dynamic Coating, Inc. “Crystal Structure of MoS2”
[21] Zhiming M. Wang “MoS2 Materials, Physics, and Devices” Springer (2014). ISBN: 9783319028491
[22] A. Molina-Sa ́nchez, and L. Wirtz “Phonons in single-layer and few-layer MoS2 and WS2” PHYSICAL REVIEW B 84(15), 155413 (2011).
[23] Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone, and Sunmin Ryu “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2” ACS NANO 4(5), pp.2695-2700 (2010).
[24] Yiya Peng, Zhaoyu Meng, Chang Zhong, Jun Lu, Weichao Yu, YunBo Jia, and Yitai Qian “Hydrothermal Synthesis and Characterization of Single- Molecular-Layer MoS2 and MoSe2” CHEMISTRY LETTERS (8), pp.772-773 (2001).
[25] D. Ganta, S. Sinha, and Richard T. Haasch “2-D Material Molybdenum Disulfide Analyzed by XPS” SURFACE SCIENCE SPECTRA 21(19), pp.19-27 (2014).
[26] Wanxiang Feng, Yugui Yao, Wenguang Zhu, Jinjian Zhou, Wang Yao, and DiXiao “Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: A first-principles study” PHYSICAL REVIEW B 86(16), 165108 (2012).
[27] B. Radisavljevic, and A. Kis “Mobility engineering and metal-insulator transition in monolayer MoS2” NATURE MATERIALS 12(9), pp.815-820 (2013).
[28] A. Kuc, N. Zibouche, and T. Heine “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2” PHYSICAL REVIEW B 83(24), 245213 (2011).
[29] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz “Atomically Thin MoS2: A New Direct-Gap Semiconductor” PHYSICAL REVIEW LETTERS 105(13), 136805 (2010).
[30] Goki Eda, Hisato Yamaguchi, Damien Voiry, Takeshi Fujita, Mingwei Chen, and Manish Chhowalla “Photoluminescence from Chemically Exfoliated MoS2” NANO LETTERS 11(12), pp.5111-5116 (2011).
[31] Hui Zhang, Yaoguang Ma, Yi Wan, Xin Rong, Ziang Xie, Wei Wang, and Lun Dai “Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence” SCIENTIFIC REPORTS 5, 8440 (2015).
[32] Yi-Hsien Lee, Xin-Quan Zhang, Wenjing Zhang, Mu-Tung Chang, Cheng- Te Lin, Kai-Di Chang, Ya-Chu Yu, Jacob Tse-Wei Wang, Chia-Seng Chang, Lain- Jong Li, and Tsung-Wu Lin “Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition” ADVANCED MATERIALS 24(17), pp.2320- 2325 (2012).
[33] Lee Kheng Tan, Bo Liu, Jing Hua Teng, Shifeng Guo, Hong Yee Low and Kian Ping Loh “Atomic layer deposition of a MoS2 film” NANOSCALE 6(18), pp.10584-10588 (2014).
[34] Hong Je Choi, Ye Seul Jung, Seung Min Lee, Sojung Kang, Dongjea Seo, Hangyel Kim, Heon-Jin Choi, Gwan-Hyoung Lee, and Yong Soo Cho “Large- Scale Self-Limiting Synthesis of Monolayer MoS2 via Proximity Evaporation from Mo Films” CRYSTAL GROWTH & DESIGN 20(4), pp.2698-2705 (2020). [35] Jun′ichi Shimizu, Takumi Ohashi, Kentaro Matsuura, Iriya Muneta, Kuniyuki Kakushima, Kazuo Tsutsui, Nobuyuki Ikarashi, and Hitoshi Wakabayashi “Low- Temperature MoS2 Film Formation Using Sputtering and H2S Annealing” IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY 7(1), pp.2-6 (2019). [36] JJiadong Zhou, Junhao Lin, Xiangwei Huang, Yao Zhou, Yu Chen, Juan Xia, Hong Wang, Yu Xie, Huimei Yu, Jincheng Lei, Di Wu, Fucai Liu, Qundong Fu, Qingsheng Zeng, Chuang-Han Hsu, Changli Yang, Li Lu, ting Yu, Zexiang Shen, Hsin Lin, Boris I. Yakobson, Qian Liu, Kazu Suenaga, Guangtong Liu, and Zheng Liu “A library of atomically thin metal chalcogenides” NATURE 556(7701),pp.355-359 (2018).
[37] Aditya Singha, Monika Mouna, Madan Sharmaa, Arabinda Barmanb, Ashok Kumar Kapoor, and Rajendra Singh “NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2” APPLIED SURFACE SCIENCE 538, 148201 (2021).
[38] J. Kim, S. Liu, S. Tan, J. McVittie, K. Saraswat, and Y. Nishi “Germanium Surface Cleaning with Hydrochloric Acid” ECS TRANSACTIONS 3(7), pp.1191-1196 (2006).
[39] Shiyu Sun, Yun Sun, Zhi Liu, Dong-Ick Lee, Samuel Peterson, and Piero Pianetta “Surface termination and roughness of Ge(100) cleaned by HF and HCl solutions” APPLIED PHYSICS LETTERS 88(2), 021903 (2006).
[40] Xiaolei Ma, Xiangwei Jiang, Yuan Li, and Jiezhi Chen “Schottky-barrier modulation at germanium/monolayer MoS2 heterojunction interface: the roles of passivation and interfacial layer” APPLIED PHYSICS EXPRESS 13(2), 021004 (2020).


[1] 李正中 “薄膜光學與鍍膜技術” 藝軒圖書出版社 第九版, (2020). ISBN 978-986-394-029-6
[2] 連翊鈞 “石墨烯應用於近紅外光偵測器元件之研究” 國立中央大學碩
士論文 (2016).
[3] Seung Su Baik, Seongil Im, and Hyoung Joon Choi “Work Function Tuning in Two-Dimensional MoS2 Field-Effect-Transistors with Graphene and Titanium Source-Drain Contacts” SCIENTIFIC REPORTS 7, 45546 (2017).
[4] A. Kuc, N. Zibouche, and T. Heine “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2” PHYSICAL REVIEW B 83(24), 245213 (2011).
[5] J. A. Dillon Jr., and H. E. Farnsworth “WorkFunction Studies of Germanium Crystals Cleaned by Ion Bombardment” JOURNAL OF PHYSICS APPLIED PHYSICS 28(174), pp.174-184 (1957).
[6] Simon M. Sze, and Kwok K. Ng “Physics of Semiconductor Devices” John Wiley & Sons (2006). ISBN 0470068302
[7] 黃冠凱 “氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光偵測器之製作 與特性分析” 國立中央大學碩士論文 (2003).
[8] 陳聖文 “矽鍺薄膜應用於近紅外光石墨烯光偵測器” 國立中央大學碩 士論文 (2018).
[9] Junye Dong, Rohan Ullal, Jie Han, Shanghai Wei, Xin Ouyang, Junzhe Donga, and Wei Gao “Partially crystallized TiO2 for microwave absorption” JOURNAL OF MATERIALS CHEMISTRY A 3, pp.5285-5288 (2015).
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2022-3-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明