博碩士論文 103226060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.137.198.130
姓名 陳致瑋(Chih-Wei Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
(Improving carrier collection with graded InGaN based solar cell)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響
★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討★ 氮化物表面電漿生醫感測之理論分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於氮化銦鎵材料的能帶可調範圍從0.7eV 到3.4eV,此三元化合物便成為光伏元件的熱門材料,理論上,多接面太陽能電池可透過適當的銦摻雜,使得全光譜的太陽能電池得以實現,但在氮化銦鎵太陽能電池的研究上的轉換效率仍低於3 % ,其歸因於許多的材料限制,例如材料成長品質與長波長吸收的權衡,不足的載子收集等。
在此研究中,我們以漸變銦含量的氮化銦鎵作為主動層,其目的為增加載子的收集及吸收光譜的範圍。我們準備了三種樣品: 兩種漸變銦含量的氮化銦鎵太陽能電池,其厚度分別為 172 nm 及184 nm,及一固定15 % 銦含量的傳統型 p-i-n 結構。所有樣本皆由有機金屬化學氣相沉積法成長於藍寶石基板上,根據電流-電壓曲線及量子光譜圖的結果,漸變結構的太陽能電池的轉換效率高於傳統的p-i-n結構,但增加主動層的厚度卻導致較低的轉換效率。結果顯示漸變能帶結構能夠有效地增加載子的收集,除此之外,模擬結果指出極化效應亦對於載子收集有重大的影響。
摘要(英) The tunable band gaps of InGaN, spanning from 3.4eV (GaN) to 0.7eV (InN), make the ternary alloy an attractive material system for photovoltaic devices. Although the absorption of nearly full solar spectrum is theoretically possible with the multi-junction containing properly selected indium compositions, the measured conversion efficiencies of InGaN-based solar cells are typically below 3 %.The unsatisfactory performances can be attributed to many material issues such as the trade-off between long-wavelength absorption and high material qualities, insufficient carrier collection etc.
In this work, a single InxGa1-xN layer with graded composition was employed as the active region for nitride-based solar cells. The goal is to increase carrier collection efficiencies and the wavelength range of optical absorption. Three types of solar cells were studied: the graded InxGa1-xN junctions with the lengths of 172 nm and 184 nm, and InxGa1-xN junction with fixed indium composition (x = 0.15). All the devices were grown by metal organic chemical vapor deposition (MOCVD). According to the results of J-V curves under solar illumination and quantum-efficiency spectra, it is found that photovoltaic performances measured with the graded junctions are superior to those obtained with fixed indium content, but lengthening the junction leads to lower efficiencies. The results indicate that carrier collection can be enhanced by the graded conduction and valence band edges. In addition, theoretical analyses based on self-consistent 1D Poisson and Schrödinger equations indicate that polarization effect also plays an important role in photo-current generation.
關鍵字(中) ★ 漸變銦鎵太陽能電池 關鍵字(英)
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT…………………………………………….…i
ENGLISH ABSTRACT…………………………….……….…….….ii
ACKNOWLEDGEMENTS……………………………………….…iv
TABLE OF CONTENTS……………………………………………..v
LIST OF TABLES…………………………………………………..vii
LIST OF FIGURES………………………………………………...viii
LIST OF SYMBOLS………………………………………………..xi
1. INTRODUCTION………………………………………………...1
1.1 Why III-nitrides for solar cells?………………………………….….....1
1.2 Brief history and progress in III-nitride solar cells……………….….....3
1.3 The challenges………………………………………………………......8
1.4 The advantages of graded InGaN absorption layer………….………...12
1.5 Motivation and thesis overview…………….……………….………...15
2. EXPERIMENTS…………………………………………………17
2.1 Design of device structure………………………………….………….17
2.2 Epitaxial growth…………………………………………………….…19
2.3 Device fabrication……………………………………………………..21
2.4 Measurement instruments……………………………………………..23
2.4.1 External quantum efficiency……………………………………..23
2.4.2 I-V curve under AM1.5G illumination…………………………..25
3. RESULTS AND DISCUSSION……………………………….…28
3.1 EQE feature……………………………………………………….…..28
3.2 J-V curve feature…………………………………………………….…31
3.3 Theoretical analyses with calculated band diagrams………………….34
4. CONCLUSION AND FUTURE WORK…………….…………..40
4.1 Conclusion…………………………………………………………….40
4.2 Future work……………………………………………………………41
REFERENCE……………………………………………………………..45
參考文獻 [1]C.Honsberg, O. Jani, A. Doolittle, E.Trybus, G.Namkoong, I. Ferguson, D. Nicole, and A. Payne, “InGaN– A NEW SOLAR CELL MATERIAL”, Proceedings of the 19th European Photovoltaic Science and EngineeringConference,p. 15-20, Paris, France, June 7-11, 2004
[2] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, “Effects of narrow band gap on the properties of InN”, PHYSICAL REVIEW B, 66, 201403, November 2002
[3] J. Wu, W.Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, Hai Lu, and William J. Schaff, “Temperature dependence of the fundamental band gap of InN”, JOURNAL OF APPLIED PHYSICS, Vol. 94, No. 7, October, 2003
[4] J. Wu, W.Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, “Small band gap bowing in 〖In〗_(1-x) 〖Ga〗_x N alloys”, Appl. Phys. Lett., Vol. 80, No. 25, April, 2002

[5] R. R. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, “Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach”, Appl. Phys. Lett., 98, 151907, April, 2011
[6] A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges”, IEEE J. of Photovoltaics, Vol. 2, No.3, July, 2012
[7] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett., 77, 2572, September, 1997
[8] G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurzite structure GaN on sapphire around fundamental absorption edge (0.78 - 4.77 eV) by spectroscopic ellipsometry and the optical transmission method”, Appl. Phys. Lett., 70, 3209-3211, April, 1997
[9] N. M. Ahmed, Z. Sauli, U. Hashim, and Y. Al-Douri, “Investigation of absorption coefficient, refractive index, energy band gap, and film thickness for 〖Al〗_0.11 〖Ga〗_0.89 N, 〖Al〗_0.03 〖Ga〗_0.97 N, and GaN by optical transmission method”, Int. J. Nanoelectronics and Materials, 2, 189-195, 2009
[10] O. K. Jani, “Development of wide-band gap InGaN solar cells for high-efficiency photovoltaics”, Georgia Institute of Technology, phD, August, 2008
[11] M Drechsler, D. M. Hoffmann, B. K. Meyer, T. Detchprohm, H. Amano, and I. Akasaki, “Determination of conduction band electron effective mass in hexagonal GaN”, Jpn. J. Appl. Phys., Vol. 34, L 1187-L 1179, 1995
[12] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, M. A. Khan, “Carrier mobility model for GaN”, Solid-State Electronics, 47, 111-115, June, 2002
[13] M. A. Khan, G. Simin, S. G. Pytel, A. Monti, E. Santi, and J. L. Hudgin, “New developments in gallium nitride and the impact on power electronics”, Power Electronics Specialists Conference, p. 15-26, Recife, Brazil, June, 2005
[14] S. C. Jain, M. Wilander, J. Narayan, and R. Van Overstraeten, “III-nitrides: Growth, characterization, and properties”, J. Appl. Phys., Vol 87, No. 3, February, 2000
[15] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, W. K. Metzger, and Sarah Kurtz, “Superior radiation resistance of 〖In〗_(1-x) 〖Ga〗_x N alloys: Full-solar-spectrum photovoltaic material system”, J. of Appl. Phys., Vol. 94, No. 10
[16] A. Yamamoto, Md. R. Islam, Ting-Ting Kang, and A. Hashimoto, “Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells”, Phys. Status Solidi C, 7, No.5, 1309-1316, 2010
[17] S. Yu Kurin, V. D. Doronin, S. A. Ivanov, H. I. Helava, B. P. Papchenko, A. A. Antipov, A. S. Usikov, and Yu N. Makarov, “Conversion efficiency in a solar splitting system”, J. of Phys.: Conference Series, 572, 2014
[18] C. Yang, X. Wang, H. Xiao, J. Ran, C. Wang, G. Hu, X. Wang, X. Zhang, Jianping Lee, and Jinmin Lee, “Photovoltaic effects in InGaN structures with p-n junctions”, Phys. Stat. Sol. (a), 204, No.12, 4288-4291, October, 2007
[19] O. Jani, H. Yu, E. Trybus, B. Jampana, I. Ferguson, A. Doolittle, and C. Honsberg, “Effect of phase separation on performance of III-V nitride solar cells”, 22nd European Photovoltaic Solar Energy Conf., 64-67, Milan, Italy, September, 2007
[20] P. Misra, C.Boney, N. Medelci, D. Starikov, A. Freundlich, and A. Bensaoula,“Fabrication and characterization of 2.3eV InGaN photovoltaic devices“, 33rd IEEE Photovoltaic Specialists Conf., San Diego, USA, May, 2008
[21] A. Yamamoto, K. Sugita, M. Horie, Y. Ohmura, Md. R. Islam, and A. Hashimoto, “Mg-doping and N^+-P junction formation in MOVPE- grown 〖In〗_x 〖Ga〗_(1-x) N (x~0.4)”, 33rd IEEE Photovoltaic Specialists Conf., San Diego, USA, May, 2008
[22] X. M. Cai, S. W. Zeng, and B. P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell”, Appl. Phys. Lett., 95, No. 17, 173504, October, 2009
[23] X. M. Cai, S. W. Zeng, and B. P. Zhang, “Favorable photovoltaic effects in InGaNpinhomojunction solar cell”, Electronics Letters, Vol. 45, No. 24, 1266-1267, November, 2009
[24] B. R. Jampana, A. G. Melton, M. Jamil, N. N. Faleev, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Design and realization of wide-band-gap (~2.67eV) InGaN p-n junction solar cell”, IEEE Electron Device Letters, Vol. 31, No. 1, 32-34, January, 2010
[25] C. Boney, I. Hernandez, R. Pillai, D. Starikov, A. Bensaoula, M. Henini, M. Syperek, J. Misiewicz, and R. Kudrawiec, “Growth and characterization of InGaN for photovoltaic devices”, Phys. Status Solidi C, Vol. 8, No. 7, 2466-2668, July, 2011
[26] L. Sang, M. Liao, Y. Koide, and M. Sumiya, “Temperature and light intensity dependence off photocurrent transport mechanisms in InGaN p-i-n homojunction solar cells”, Japanese J. Appl. Phys., 52, 08JF04, 2013
[27] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells”, Appl. Phys. Lett., 91, 132117, September, 2007
[28] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap”,Appl. Phys. Lett., 93, No. 14, 143502, October, 2008
[29] R. Dahal, B. Pantha, J. Li, J. Y. Ling, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths”, Appl. Phys. Lett., 94, 063505, February, 2009

[30] Ming-JerJeng, Yu-Lin Lee, and Liann-Be Chang, “Temperature dependences of 〖In〗_x 〖Ga〗_(1-x) N multiple quantum well solar cells”, J. Phys. D: Appl. Phys., 42, 105101, 2009
[31] K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells”, Appl. Phys. Lett., 96, No. 8, 081103, February, 2010
[32] Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using strained-layer GaInN/GaInNsuperlattice active layer on a freestanding GaN substrate”, Appl. Phys. Express, Vol.4, No. 2, 021001, January, 2011
[33] T. Fujii, Y. Kuwahara, D. Iida, Y. Fujiyama, Y. Morita, T. Sugiyama, Y. Isobe, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “GaInN-based solar cells using GaInN/GaInNsuperlattices”, Phys. Status Solidi C, 8, No. 7-8, 2463-2665, June, 2011
[34] H. C. Lee, Y. K. Su, W. H. Lan, J. C. Lin, K. C. Huang, W. J. Lin, Y. C. Cheng, and Y. H. Yeh, “Study of electrical characteristics of GaN-based photovoltaics with graded 〖In〗_x 〖Ga〗_(1-x) N absorption layer”, IEEE Photonics Tech. Lett., Vol 23, No. 6, March, 2011
[35] J. J. Wierer, Jr., D. D. Koleske, and S. R. Lee, “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells”, Appl. Phys. Lett., 100, 111119, March, 2012
[36] N. G. Young, R. M. Farrell, Y. L. Hu, Y. Terao, M. Iza, S. Keller, S. P. DenBaars, S. Nakamura, and J. S. Speck, “High performance thin quantum barrier InGaN/GaN solar cell on sapphire and bulk (0001) GaN substrates”,Appl. Phys. Lett., 103, 173903, 2013
[37] N. G. Young, E. E. Perl, R. M. Farrell, M. Iza, S. Keller, J. E.Bowers,S. Nakamura, S. P. DenBaars, and J. S. Speck, “High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration”, Appl. Phys. Lett., 104, 163902, April, 2014
[38] H. Çakmak, E. Arslan, M. Rudziński, P. Demirel, H. E. Unalan, W. Strupiński, R. Turan, M. Öztürk, and E. Özbay, “Indium rich InGaN solar cells grown by MOCVD”, J. Mater. Sci.: Mater. Electron., Vol. 25, No. 8, 3652-3658, June, 2014
[39] S. V. Felip, M. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration”,Appl. Phys. Exp., Vol. 7, No. 3, November, 2014
[40] C. A. M. Fabien, B. P. Cunning, J. J. Merola, E. A. Clinton, and W. A. Doolittle, “Large-Area III-Nitride Double-Heterojunction Solar Cells with RecordHigh In-content InGaN Absorbing Layers”, 42nd Photovoltaic Specialists Conf., 1-3, New Orleans, LA, June, 2015
[41] D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J. F. Guillemoles, R. Patterson, L. M. Huang, and M. A. Green, “Hot carrier solar cells: Principles, materials and design”, Physica E, 42, 2862-2866, December 2009
[42] K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Origin of hot carriers in InGaN-based quantum-well solar cells”, IEEE Electron Device Letters, Vol. 32, No. 2, February, 2011
[43] M. A. Green, “Third generation concepts for photovoltaics”, 3rd world conference on photovoltaic energy conversion, 50-54, Osaka, Japan, May, 2003
[44] Tongtong Zhu and Rachel A. Oliver, “Unintentional doping in GaN”, Phys. Chem. Chem. Phys., 14, 9558-9573, May, 2012
[45] HadisMorkoç, Handbook of Nitride Semiconductors and Devices, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008
[46] I-hsiu Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN”, Appl. Phys. Lett., Vol. 69, No. 18, October, 1996
[47] B. N. Pantha, A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, “Electrical and optical properties of p-type InGaN”, Appl. Phys. Lett., 95, 261904, December, 2009
[48] Y. K. Kuo, J. Y. Chang, and Y. H. Shih, “Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN p-i-n solar cells”, IEEE J. Quantum Electron., Vol. 48, No. 3, 367-374, March, 2012
[49] H. W. Wang, Peichen Yu, Y. R. Wu, H. C. Kuo, Edward Y. Chang, and S. H. Lin, “Projected Efficiency of Polarization-Matched p-〖In〗_x 〖Ga〗_(1-x) N/i-〖In〗_y 〖Ga〗_(1-y) N/n-GaN Double Heterojunction Solar cells”, IEEE J. Photovoltaics, Vol. 3, No.3, July, 2013
[50] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and G-face AlGaN/GaNheterostructures”, J. Appl. Phys., Vol. 85, No.6, 3222-3233, March 1999
[51] I. M. Dharmadasa, “Third gerneration multi-layer tandem solar cells for achieving high conversion efficiencies”, Solar Energy Materials & Solar Cells, 85, 293-300, July, 2004



[52] KK PhD: Mass flow controllers and finding one’s path. September 2013
From:http://laserboyfriend.blogspot.tw/2013/09/mass-flow-controllers-and-finding-ones.html

[53] Axitron: How MOCVD works.
From:http://www.aixtron.com/fileadmin/documents/Brochures/How_MOCVD_works.pdf

[54] Shaoguang Dong, Kanghua Chen, Guojie Chen and Xin Chen,Solar Cells with InGaN/GaN and InP/InGaAsP and InGaP/GaAs Multiple Quantum Wells, Solar Cells-New Approaches and Reviews, Prof. Leonid A. Kosyachenko (Ed.), InTech

[55] “Solar Cell Spectral Response Measurement System QE-R Operation Manual”, Enli Technology Co., Ltd

[56]D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys,“Critical thickness calculations for InGaN/GaN”, J. Cryst. Growth,303, 314 (2007)
[57]Carl J Neufeld, Samantha C Cruz, Robert M. Farrell, Michael Iza, Jordan R. Lang, StaciaKeller, Shuji Nakamura, Steven P. DenBaars, James S. Speck, and Umesh K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells”, Appl. Phys. Lett., 98, 243507, 2011

[58] Yuh-Renn Wu, From: http://yrwu-wk.ee.ntu.edu.tw/

[59] G. F. Brown, J. W. Ager III, W. Walukiewicz, J.Wu, “Finite element simulations of compositionally graded InGaN solar cells”, Solar Energy Materials & Solar Cells, 94, 478-483, 2010

[60] Z. Q. Li, M. Lestradet, Y. G. Xiao, and S. Li, “Effects of polarization charge on the photovoltaic properties of InGaN solar cells”, Phys. Status Solidi A, 208, No 4, 928-931, 2011

[61] Jih-Yuan Chang, Bo-Ting Liou, Han-Wei Lin, Ya-Hsuan Shih, Shu-Hsuan Chang, and Yen-KuangKuo, “Numerical investigation on the enhanced carriercollection efficiency of Ga-face GaN/InGaN p-i-nsolar cells with polarization compensation interlayers”, Optics Letters, Vol. 36, No. 17, 2011
[62] J. Y. Chang and Y. K. Kuo, “Simulation of N-face InGaN-based p-i-n solar cells”, J. Appl. Phys., Vol. 112, pp. 033109-1-033109-5, 2012

[63] Z. Q. Li, M. Lestradet, Y. G. Xiao, and S. Li, “Effect of polarization charge on the photovoltaic properties of InGaN solar cells”, Phys. Status Solidi (a), vol. 208

[64] Hsun-Wen Wang, Peichen Yu, Yuh-Renn Wu, Hao-Chung Kuo, Edward Yi Chang, and Shiuan-Huei Lin, “Projected Efficiency of Polarization-Matched p-〖In〗_x 〖Ga〗_(1-x) N/i-〖In〗_y 〖Ga〗_(1-y) N/n-GaN Double Heterojunction Solar Cell”, IEEE Electron Device Society, Vol. 3, Issue 3, 2013
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2016-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明