參考文獻 |
1. Neil A. Campbell , J.B.R., et al., Biology, 8th Edition. 2008: p. 125-139.
2. Robert Bear, D.R. , et.al., Principles of Biology. 2016. 1: p. 319-330.
3. Phillipe Bulet*, C.H., Jean-Luc Dimarcq, DanieÂle Ho mann, Antimicrobial peptides in insects; structure and function. 1999.
4. Mahlapuu, M., et al., Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Frontiers in Cellular and Infection Microbiology, 2016. 6.
5. Sato, H. and J.B. Feix, Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochim Biophys Acta, 2006. 1758(9): p. 1245-56.
6. Yang, L., Harroun, T. A., Weiss, T. M., Ding, L., Huang, H. W., Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores. Biophysical, 2001. 81: p. 1475–85.
7. Paolo, R.L.B., P.C.; Tieleman,D.P.; Sansom,M,S, Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. 1999.
8. Kapoor, G., S. Saigal, and A. Elongavan, Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 2017. 33(3): p. 300.
9. Galdiero, S., et al., Peptide-lipid interactions: experiments and applications. Int J Mol Sci, 2013. 14(9): p. 18758-89.
10. T.C.TerwilligerL.WeissmanD.Eisenberg, The structure of melittin in the form I crystals and its implication for melittin′s lytic and surface activities. 1982.
11. Vogel, H.a.J., F. , The steucture of melittin in membranes. Biophys. J. 50,573-582., 1986.
12. Ramamoorthy, A., et al., Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophys J, 2006. 91(1): p. 206-16.
13. Zhang, T., et al., Daptomycin forms cation- and size-selective pores in model membranes, in Biochim Biophys Acta. 2014. p. 2425-30.
14. Zhang, T., et al., Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB-182,462. Biochim Biophys Acta, 2013. 1828(2): p. 302-8.
15. Müller, A., et al., Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences, 2016. 113(45): p. E7077-E7086.
16. Lee, M.-T., et al., Molecular State of the Membrane-Active Antibiotic Daptomycin. Biophysical Journal, 2017. 113(1): p. 82-90.
17. Liu, B. and M. Karttunen, Lipopeptide daptomycin: Interactions with bacterial and phospholipid membranes, stability of membrane aggregates and micellation in solution. Biochim Biophys Acta Biomembr, 2018.
18. Ball, L.-J. et al. NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Org. Biomol. Chem. 2, 1872–1878 (2004).
19. A. Yakubovich, I. Solov’yov, A. Solov’yov, W. Greiner, Ab initio theory of helix↔coil phasetransition. Eur. Phys. J. D.46, 215–225, 2007
20. Chen, Y.F., et al., Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry, 2014. 53(33): p. 5384-92.
21. Lee, M.-T., et al., Comparison of the Effects of Daptomycin on Bacterial and Model Membranes. Biochemistry, 2018. 57(38): p. 5629-5639.
22. Jung, D., et al., Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol, 2004. 11(7): p. 949-57.
23. Pogliano, J., N. Pogliano, and J.A. Silverman, Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol, 2012. 194(17): p. 4494-504.
24. Cottagnoud, P., Daptomycin: a new treatment for insidious infections due to gram-positive pathogens. Swiss Med Wkly,, 2008. 138(7-8): p. 93-9.
25. Silverman, J.A., N.G. Perlmutter, and H.M. Shapiro, Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2003. 47(8): p. 2538-2544.
26. Humphries, R.M., Pollett, S., Sakoulas, G., A Current Perspective on Daptomycin for the Clinical Microbiologist. Clinical Microbiology 2013. 26(4): p. 759-80.
27. Lee, M.T., Sun, T. L., Hung, W. C., Huang, H. W., Process of inducing pores in membranes by melittin. PNAS, 2013. 110: p. 14243–48.
28. Zasloff, M., Antimicrobial peptides of multicellular organisms. NATURE, 2002. 415: p. 389-95.
29. Chen, F.Y., Lee, M. T., Huang, H. W.,, Evidence for Membrane Thinning Effect as the Mechanism for Peptide-Induced Pore Formation. Biophysical Society, 2003. 84(6): p. 3751-58.
30. Jung, D., et al., Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes. Chem Phys Lipids, 2008. 154(2): p. 120-8.
31. Muraih, J.K., et al., Oligomerization of daptomycin on membranes. Biochim Biophys Acta, 2011. 1808(4): p. 1154-60.
32. Muraih, J.K., et al., Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochim Biophys Acta, 2012. 1818(3): p. 673-8.
33. Hindler, J.A., et al., In vitro activity of daptomycin in combination with beta-lactams, gentamicin, rifampin, and tigecycline against daptomycin-nonsusceptible enterococci. Antimicrob Agents Chemother, 2015. 59(7): p. 4279-88.
34. Muraih, J.K. and M. Palmer, Estimation of the subunit stoichiometry of the membrane-associated daptomycin oligomer by FRET. Biochim Biophys Acta, 2012. 1818(7): p. 1642-7.
35. Huang, H.W., Action of Antimicrobial Peptides: Two-State Model†. Biochemistry, 2000. 39(29): p. 8347-8352.
36. 陳方玉、黃惠文,「以X光多片層繞射研究生物薄膜」,科儀新知,18卷,六期,P22-26,1997。.
37. Torbet, J.a.W., M. H. F.. " X-ray diffraction studies of lecithin bilayers." J. Theor. Biol., Vol. 62, Issue 2, pp. 447 – 458 (1976). .
38. Blaurock, A. E.. “Structure of the nerve myelin membrane: Proof of the low-resolution profile.” J. Mol. Biol., Vol. 56, pp. 35 – 52 (1971).
39. Warren, B.E., X-ray diffraction. Dover ed. 1990, New York: Dover Publications. vii, 381 p. .
40. Wu, Y., et al., “X-Ray Diffraction Study of Lipid Bilayer Membranes Interacting with Amphiphilic Helical Peptides: Diphytanoyl Phosphatidylcholine with Alamethicin at Low Concentrations.”, Biophys. J., Vol. 68, pp. 2361-2369, 1995.
41. K.S. Rotondi, L.M. Gierasch, A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers, 80 (2005), pp. 374-385.
42. Taylor S.D., Palmer M. The action mechanism of daptomycin. Bioorg. Med. Chem. 2016;24:6253–6268. |