參考文獻 |
1. Tao, Y. Screen‐printed front junction n‐type silicon solar cells. in Printed Electronics - Current Trends and Applications (InTech, 2016).
2. Olaleru, S. A., Kirui, J. K., Wamwangi, D., Roro, K. T. & Mwakikunga, B. Perovskite solar cells: The new epoch in photovoltaics. Sol. Energy 196, 295–309 (2020).
3. Best research-cell efficiency chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html.
4. Katz, E. A. Perovskite: Name puzzle and german‐russian odyssey of discovery. Helv. Chim. Acta 103, e2000061 (2020).
5. Giustino, F. & Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016).
6. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).
7. Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 2017 112 1, 1–18 (2017).
8. Babu, R., Giribabu, L. & Singh, S. P. Recent advances in halide-based perovskite crystals and their optoelectronic applications. Cryst. Growth Des. 18, 2645–2664 (2018).
9. Sun, J. et al. Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv. Sci. 5, 1700780 (2018).
10. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science (80-. ). 358, 745–750 (2017).
11. Chen, Q. et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015).
12. Kovalenko, M. V, Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).
13. Parrott, E. S. et al. Interplay of structural and optoelectronic properties in formamidinium mixed tin–lead triiodide perovskites. Adv. Funct. Mater. 28, 1802803 (2018).
14. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
15. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016 153 15, 247–251 (2016).
16. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
17. Kim, H.-S. et al. Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 6, 4633–4639 (2015).
18. L, M., J, Y., TF, G. & Y, Y. Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155–165 (2016).
19. Hu, Q. et al. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano 8, 10161–10167 (2014).
20. D, L., J, Y. & TL, K. Compact layer free perovskite solar cells with 13.5% efficiency. J. Am. Chem. Soc. 136, 17116–17122 (2014).
21. Prochowicz, D. et al. Mechanosynthesis of pure phase mixed-cation MAxFA1−xPbI3 hybrid perovskites: photovoltaic performance and electrochemical properties. Sustain. Energy Fuels 1, 689–693 (2017).
22. Chen, Q. et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015).
23. Aharon, S., Cohen, B. El & Etgar, L. Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J. Phys. Chem. C 118, 17160–17165 (2014).
24. Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y. & Wei, S.-H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).
25. Choi, K. et al. A short review on interface engineering of perovskite solar cells: a self-assembled monolayer and its roles. Sol. RRL 4, 1900251 (2020).
26. Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (2002).
27. Ali, F., Roldán‐Carmona, C., Sohail, M. & Nazeeruddin, M. K. Applications of self‐assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10, 2002989 (2020).
28. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).
29. Qiao, R. & Zuo, L. Self-assembly monolayers boosting organic–inorganic halide perovskite solar cell performance. J. Mater. Res. 33, 387–400 (2018).
30. Eric L. Hanson, Jeffrey Schwartz, *, Bert Nickel, Norbert Koch, and & Danisman, M. F. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J. Am. Chem. Soc. 125, 16074–16080 (2003).
31. Tidswell, I. M. et al. X‐ray grazing incidence diffraction from alkylsiloxane monolayers on silicon wafers. J. Chem. Phys. 95, 2854 (1998).
32. Gawalt, E. S., Avaltroni, M. J., Koch, N. & Schwartz, J. Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir 17, 5736–5738 (2001).
33. Hotchkiss, P. J. et al. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc. Chem. Res. 45, 337–346 (2012).
34. Paniagua, S. A. et al. Phosphonic acids for interfacial engineering of transparent conductive oxides. (2016) doi:10.1021/acs.chemrev.6b00061.
35. G, G., A, F. & SJ, S. Engineering and design in the bioelectrochemistry of metalloproteins. Curr. Opin. Struct. Biol. 11, 491–499 (2001).
36. Dimitrakopoulos, C. D., & Malenfant, P. R. Organic thin film transistors for large area electronics. Advanced materials, 14(2), 99-117 (2002).
37. Chua, L.-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nat. 2005 4347030 434, 194–199 (2005).
38. Pernstich, K. P. et al. Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 96, 6431 (2004).
39. Lazzerini, G. M. et al. Increased efficiency of light-emitting diodes incorporating anodes functionalized with fluorinated azobenzene monolayers and a green-emitting polyfluorene derivative. Appl. Phys. Lett. 101, 153306 (2012).
40. Wojciechowski, K. et al. Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano 8, 12701–12709 (2014).
41. Yang, G. et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. J. Mater. Chem. A 5, 1658–1666 (2017).
42. Bai, Y. et al. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 2016 71 7, 1–9 (2016).
43. Fang Chen, Xiulan Li, Joshua Hihath, Zhifeng Huang, and & Tao*, N. Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).
44. Zhang, L. & Cole, J. M. Anchoring Groups for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 7, 3427–3455 (2015).
45. Hotchkiss, P. J. et al. Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study. Adv. Mater. 21, 4496–4501 (2009).
46. Singh, N. & Tao, Y. Effect of surface modification of nickel oxide hole‐transport layer via self‐assembled monolayers in perovskite solar cells. Nano Sel. nano.202100004 (2021).
47. Khodabakhsh, S. et al. Using Self-Assembling Dipole Molecules to Improve Hole Injection in Conjugated Polymers. Adv. Funct. Mater. 14, 1205–1210 (2004).
48. Mingorance, A. et al. Interfacial Engineering of Metal Oxides for Highly Stable Halide Perovskite Solar Cells. Adv. Mater. Interfaces 5, 1800367 (2018).
49. Liu, K. et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ. Sci. 11, 3463–3471 (2018).
50. J, W. et al. Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer. ACS Appl. Mater. Interfaces 10, 5511–5518 (2018).
51. Wu, J.-R. et al. The Way to Pursue Truly High-Performance Perovskite Solar Cells. Nanomater. 2019, Vol. 9, Page 1269 9, 1269 (2019).
52. Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).
53. Rech, B., Jäger, K., Korte, L. & Albrecht, S. Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Opt. Express, Vol. 25, Issue 12, pp. A473-A482 25, A473–A482 (2017).
54. Liang, T. S. et al. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ. Sci. 12, 116–148 (2019).
55. Chantana, J. et al. Effect of alkali treatment on photovoltaic performances of cu(in,ga)(s,se)2 solar cells and their absorber quality analyzed by urbach energy and carrier recombination rates. ACS Appl. Energy Mater. 3, 1292–1297 (2020).
56. Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).
57. J, X. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1091–1097 (2020).
58. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 2020 511 5, 870–880 (2020).
59. Borriello, I., Cantele, G. & Ninno, D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008).
60. Jacobsson, T. J. et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9, 1706–1724 (2016).
61. J. L. K., Martin*, J. D. & Mitzi, D. B. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44, 4699–4705 (2005).
62. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).
63. Karlin, K. D. Progress in inorganic chemistry. Volume 48. 603 (1999).
64. Gao, P., Grätzel, M. & Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014).
65. P, D. & T, B. A long-term view on perovskite optoelectronics. Acc. Chem. Res. 49, 339–346 (2016).
66. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).
67. Sutton, R. J. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016).
68. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2014).
69. Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm(2). J. Phys. Chem. Lett. 7, 161–6 (2016).
70. Löper, P. et al. Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2014).
71. DP, M. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).
72. Q, L., A, A., PL, B. & P, M. Organohalide perovskites for solar energy conversion. Acc. Chem. Res. 49, 545–553 (2016).
73. Zardetto, V. et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain. Energy Fuels 1, 30–55 (2017).
74. K, W. et al. C60 as an efficient n-type compact layer in perovskite solar cells. J. Phys. Chem. Lett. 6, 2399–2405 (2015).
75. Werner, J. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 1, 474–480 (2016).
76. Chen, B. et al. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells. Adv. Energy Mater. 6, 1601128 (2016).
77. Guo, F. et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7, 1642–1649 (2015).
78. X, L. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
79. Song, J., Hu, W., Li, Z., Wang, X.-F. & Tian, W. A double hole-transport layer strategy toward efficient mixed tin-lead iodide perovskite solar cell. Sol. Energy Mater. Sol. Cells 207, 110351 (2020).
80. Gao, L. & Yang, G. Organic‐inorganic halide perovskites: from crystallization of polycrystalline films to solar cell applications. Sol. RRL 4, 1900200 (2020).
81. Diau, E. W.-G., Jokar, E. & Rameez, M. Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Lett. 4, 1930–1937 (2019).
82. Kim, Y. C. et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6, 1502104 (2016).
83. Jiang, Q. et al. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew. Chemie Int. Ed. 54, 7617–7620 (2015).
84. Song, J., Hu, W., Li, Z., Wang, X.-F. & Tian, W. A double hole-transport layer strategy toward efficient mixed tin-lead iodide perovskite solar cell. Sol. Energy Mater. Sol. Cells 207, 110351 (2020).
85. Pérez-del-Rey, D. et al. Molecular passivation of MoO3 : Band alignment and protection of charge transport layers in vacuum-deposited perovskite solar cells. Chem. Mater. 31, 6945–6949 (2019).
86. Tumen-Ulzii, G. et al. Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Commun. Mater. 1, 31 (2020).
87. Chang, H.-C., Lee, W.-Y., Tai, Y., Wu, K.-W. & Chen, W.-C. Improving the characteristics of an organic nano floating gate memory by a self-assembled monolayer. Nanoscale 4, 6629 (2012).
88. Lin, F.-J., Chen, H.-H. & Tao, Y.-T. Molecularly aligned hexa- peri -hexabenzocoronene films by brush-coating and their application in thin-film transistors. ACS Appl. Mater. Interfaces 11, 10801–10809 (2019).
89. Das, S., Joslin, J. & Alford, T. L. Self-assembled monolayer modified ITO in P3HT:PC61BM organic solar cells with improved efficiency. Sol. Energy Mater. Sol. Cells 124, 98–102 (2014).
90. Casalini, S., Bortolotti, C. A., Leonardi, F. & Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 46, 40–71 (2017).
91. Ma, H., Yip, H.-L., Huang, F. & Jen, A. K. Y. Interface engineering for organic electronics. Adv. Funct. Mater. 20, 1371–1388 (2010).
92. Yan, J., Lin, Z., Cai, Q., Wen, X. & Mu, C. Choline chloride-modified sno 2 achieving high output voltage in mapbi 3 perovskite solar cells. ACS Appl. Energy Mater. 3, 3504–3511 (2020).
93. Zhu, T., Su, J., Labat, F., Ciofini, I. & Pauporté, T. Interfacial engineering through chloride-functionalized self-assembled monolayers for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 12, 744–752 (2020).
94. Han, J. et al. Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. J. Mater. Chem. A 8, 2105–2113 (2020).
95. Han, F. et al. Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells. Electrochim. Acta 296, 75–81 (2019).
96. Liu, L. et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790–1793 (2015).
97. Abate, S. Y., Huang, D.-C. & Tao, Y.-T. Surface modification of TiO2 layer with phosphonic acid monolayer in perovskite solar cells: Effect of chain length and terminal functional group. Org. Electron. 78, 105583 (2020).
98. Zuo, L. et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674–2679 (2015).
99. Jeng, J. Y. et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107–4113 (2014).
100. Hu, Z. et al. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Appl. Surf. Sci. 441, 258–264 (2018).
101. Teo, S. et al. The role of lanthanum in a nickel oxide-based inverted perovskite solar cell for efficiency and stability improvement. ChemSusChem 12, 518–526 (2019).
102. Troughton, J., Hooper, K. & Watson, T. M. Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules. Nano Energy 39, 60–68 (2017).
103. Seo, S. et al. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 8, 11403–11412 (2016).
104. Mali, S. S., Kim, H., Shim, S. E. & Hong, C. K. A solution processed nanostructured p-type NiO electrode for efficient inverted perovskite solar cells. Nanoscale 8, 19189–19194 (2016).
105. Shin, S. S., Lee, S. J. & Seok, S. Il. Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1900455 (2019).
106. Zhang, Y.-W., Cheng, P.-P., Liang, J.-M., Tan, W.-Y. & Min, Y. Morphology control of the perovskite thin films via the surface modification of nickel oxide nanoparticles layer using a bidentate chelating ligand 2,2’-Bipyridine. Synth. Met. 258, 116197 (2019).
107. Wang, Q. et al. Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 10, 3794–3803 (2017).
108. Quiñones, R., Raman, A. & Gawalt, E. S. Functionalization of nickel oxide using alkylphosphonic acid self-assembled monolayers. Thin Solid Films 516, 8774–8781 (2008).
109. Gao, W., Dickinson, L., Grozinger, C., Morin, F. G. & Reven, L. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12, 6429–6435 (1996).
110. Koh, S. E. et al. Phenylphosphonic acid functionalization of indium tin oxide: surface chemistry and work functions. Langmuir 22, 6249–6255 (2006).
111. McClain, W. E., Florence, P. R., Shu, A., Kahn, A. & Schwartz, J. Surface dipole engineering for conducting polymers. Org. Electron. 14, 411–415 (2013).
112. Weidler, N. et al. X-ray photoelectron spectroscopic investigation of plasma-enhanced chemical vapor deposited NiOx , NiOx(OH)y , and CoNiOx(OH)y : Influence of the chemical composition on the catalytic activity for the oxygen evolution reaction. J. Phys. Chem. C 121, 6455–6463 (2017).
113. Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006).
114. Nesbitt, H. W., Legrand, D. & Bancroft, G. M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 27, 357–366 (2000).
115. Kedem, N. et al. Morphology-, synthesis- and doping-independent tuning of ZnO work function using phenylphosphonates. Phys. Chem. Chem. Phys. 16, 8310 (2014).
116. Lebedev, A. M. et al. On the interaction of self-assembled C60F18 polar molecules with the Ni(100) surface. J. Surf. Investig. X-ray, Synchrotron Neutron Tech. 11, 814–822 (2017).
117. Salim, T. et al. Perovskite-based solar cells: Impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015).
118. Tress, W. et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 11, 151–165 (2018).
119. Cao, W., Li, J., Chen, H. & Xue, J. Transparent electrodes for organic optoelectronic devices: a review. J. Photonics Energy 4, 040990 (2014).
120. Hecht, D. S., Hu, L. & Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials vol. 23 1482–1513 (2011).
121. Turak, A. dewetting stability of ITO surfaces in organic optoelectronic devices. in Optoelectronics - Advanced Materials and Devices (InTech, 2013). doi:10.5772/52417.
122. Khan, M. Z. H. Effect of ITO surface properties on SAM modification: A review toward biosensor application. Cogent Eng. 3, 1170097 (2016).
123. You, Z. Z., Dong, J. Y. & Fang, S. Du. Surface modification of indium-tin-oxide anode by oxygen plasma for organic electroluminescent devices. Phys. status solidi 201, 3221–3227 (2004).
124. Li, C. N. et al. Improved performance of OLEDs with ITO surface treatments. Thin Solid Films 477, 57–62 (2005).
125. Kim, J. S., Cacialli, F., Cola, A., Gigli, G. & Cingolani, R. Increase of charge carriers density and reduction of Hall mobilities in oxygen-plasma treated indium–tin–oxide anodes. Appl. Phys. Lett. 75, 19–21 (1999).
126. Tao, Y. T. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. J. Am. Chem. Soc. 115, 4350–4358 (1993).
127. Chang, S.-C., Chao, I. & Tao, Y.-T. Structure of self-assembled monolayers of aromatic-derivatized thiols on evaporated gold and silver surfaces: implication on packing mechanism. J. Am. Chem. Soc. 116, 6792–6805 (1994).
128. Appleyard SF, Day SR, Pickford RD, Willis MR. Organic electroluminescent devices: Enhanced carrier injection using SAM derivatized ITO electrodes, J. Mater. Chem. 10 169-73 (2000).
129. Sun, X., Di, C. an & Liu, Y. Engineering of the dielectric-semiconductor interface in organic field-effect transistors. Journal of Materials Chemistry vol. 20 2599–2611 (2010).
130. Lin, F. J., Chen, H. H. & Tao, Y. T. Molecularly aligned hexa- peri-hexabenzocoronene films by brush-coating and their application in thin-film transistors. ACS Appl. Mater. Interfaces 11, 10801–10809 (2019).
131. Tseng, C.-W., Huang, D.-C. & Tao, Y.-T. Organic transistor memory with a charge storage molecular double-floating-gate monolayer. ACS Appl. Mater. Interfaces 7, 9767–9775 (2015).
132. Gu, Z. et al. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. J. Mater. Chem. A 3, 24254–24260 (2015).
133. Mangalam, J. et al. Modification of NiOx hole transport layers with 4-bromobenzylphosphonic acid and its influence on the performance of lead halide perovskite solar cells. J. Mater. Sci. Mater. Electron. 30, 9602–9611 (2019).
134. Akın Kara, D. et al. Enhanced device efficiency and long-term stability via boronic acid-based self-assembled monolayer modification of indium tin oxide in a planar perovskite solar cell. ACS Appl. Mater. Interfaces 10, 30000–30007 (2018).
135. Xiang, H. & Komvopoulos, K. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces. J. Appl. Phys. 113, 224505 (2013).
136. Mohapatra, A. et al. Solution-processed perovskite/perovskite heterostructure via a grafting-assisted transfer technique. ACS Appl. Energy Mater. 4, 1962–1971 (2021).
137. Yu, S.-Y., Chang, J.-H., Wang, P.-S., Wu, C.-I. & Tao, Y.-T. Effect of ITO Surface modification on the OLED device lifetime. Langmuir 30, 7369–7376 (2014).
138. Wojciechowski, K. et al. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014).
139. Paniagua, S. A. et al. Phosphonic acid modification of indium−tin oxide electrodes: combined xps/ups/contact angle studies. J. Phys. Chem. C 112, 7809–7817 (2008).
140. Cheng, H., Li, Y., Zhang, M., Zhao, K. & Wang, Z. S. Self-assembled ionic liquid for highly efficient electron transport layer-free perovskite solar cells. ChemSusChem 13, 2779–2785 (2020).
141. González-Torres, M. et al. XPS Study of the chemical structure of plasma biocopolymers of pyrrole and ethylene glycol. Adv. Chem. 2014, 1–8 (2014).
142. Arkan, E. et al. Effect of functional groups of self assembled monolayer molecules on the performance of inverted perovskite solar cell. Mater. Chem. Phys. 254, 123435 (2020).
143. Hanson, E. L., Guo, J., Koch, N., Schwartz, J. & Bernasek, S. L. Advanced surface modification of indium tin oxide for improved charge injection in organic devices. J. Am. Chem. Soc. 127, 10058–10062 (2005).
144. Wojciechowski, K. et al. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014).
145. Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377 (2014).
146. Chhillar, P., Dhamaniya, B. P., Dutta, V. & Pathak, S. K. Recycling of perovskite films: Route toward cost-efficient and environment-friendly perovskite technology. ACS Omega 4, 11880–11887 (2019). |