博碩士論文 103282604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.218.54.196
姓名 娜荷(Neha Singh)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以自組裝單分子層介面修飾工程應用於鈣鈦礦太陽能電池之研究
(Interfacial engineering of perovskite solar cell using self-assembled monolayers)
相關論文
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 雙炔基分子於不同基材表面薄膜結構及其聚合反應性研究與其場效電晶體試製
★ 有機半導體材料三併環噻吩衍生物之開發與其薄膜、單晶場效電晶體元件製備與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對位取代的苯基磷酸常被用來吸附於介面形成自組裝單層分子薄膜(self-assembled monolayers, SAMs),以修飾氧化鎳及氧化銦錫電極(ITO) 電洞傳輸層。因此我們可以藉由改變極性不同的末端取代基,造成自組裝單分子膜偶極方向的不同,進而影響介面功函數與能階相對位置。同時,調整末端官能基也能改變單層分子膜表面的潤濕能力。
在本研究中,我們探討自組裝分子薄膜修飾對於兩種不同的電洞傳輸層的钙鈦礦太陽能電池效率的影響。而這兩種不同電洞傳輸層的太陽能電池採用不同製程。在修飾後的氧化鎳上,我們使用旋轉塗佈法製成钙鈦礦薄膜。而在修飾後的ITO上,我們用聚二甲基矽氧烷(PDMS)模轉印法製成钙鈦礦薄膜。經由優化調整後的製程可使其钙鈦礦薄膜之形貌與厚度保持一致,以降低這兩個因素對於太陽能電池效率的影響。
在以氧化鎳電洞傳輸層製成的钙鈦礦太陽能電池中,我們可以發現以自組裝分子薄膜修飾影響了太陽能電池的元件效能。而最能有效提升元件效率的表面修飾為使用末端氰基取代的磷酸形成的自組裝薄膜,其能量轉換效率可高達18.45%。而在以ITO電洞傳輸層製成的钙鈦礦太陽能電池中,元件的開路電壓及能量轉換效率,與其功函數及钙鈦礦太陽能電池中的能階排列有關。而有相對應分子自組裝薄膜修飾過後的ITO能階更接近於钙鈦礦薄膜,其能量轉換效率為13.94%,明顯高於以未修飾的ITO製成的元件:8.64%。之後並藉由其他元件光電性質的量測分析,討論修飾對於元件開路電壓、短路電流,及填充因子的影響。
成功在反轉元件(有/無電洞傳輸層)中植入SAM後,也使用SAM修飾串連電池中的電荷結合層,並使用轉印法製備上電池之鈣鈦礦層,克服下電池被溶解的問題。初步嘗試就成功製備串聯太陽能電池元件並且沒有下層融解的問題.. 2T串聯元件中觀察到的Voc = 1.6V 但Jsc仍有待提升。
摘要(英) Self-assembled monolayers of para-substituted phenylphosphonic acids were used to modify the surfaces of nickel oxide hole-transport layer and indium tin oxide electrode in the fabrication of perovskite solar cells. The monolayer was primarily introduced to tailor the work function of these surfaces, depending on the electron-withdrawing or electron-donating nature of the substituent. SAM modification implants a dipole at the surface, which alters the work function. Depending on the functional group at the terminal position of the molecule, the wettability of the surfaces varies. In the case of nickel oxide modification, the spin-coating procedure was used to form the perovskite film, while in the case of ITO, PDMS stamping method was used to transfer-print the perovskite film. The aim was to control the thickness as well as the morphology of the perovskite film so as to minimize the impact of these parameters on the device performance. For nickel oxide-based devices, the modification impacted the device performance such that the best-performing device was observed with electron-withdrawing cyano-substituted phosphonic acid modification, with a maximum power conversion efficiency of 18.45%. For ITO-based devices, the open-circuit voltage of devices with the corresponding SAM molecules is in agreement with the work function alignment of the molecules to the valence level of the perovskite layer. The SAM modified device with energy level closest to the perovskite, shows an efficiency of 13.94%, considerably higher to that of blank with 8.64%. The effect of modification on parameters such as open-circuit voltage, short-circuit current, and fill factor are discussed. With the successful implementation of SAM in an inverted device (with and without hole transport layer), the possibility of SAM modification of recombination layer in a tandem solar is proposed. Stamp-transferring of perovskite layer is used in the top-cell to overcome the problem of dissolution of layers in the bottom cell. Preliminary attempts to fabricate a tandem device, without the dissolution of the underneath layers have been made successfully. A satisfactory Voc of 1.6V is observed in a 2T tandem cell, while the Jsc value has a huge scope of improvement.
關鍵字(中) ★ 以自組裝單分子層介面修飾工程應用於鈣鈦礦太陽能電池之研究 關鍵字(英) ★ Interfacial engineering of perovskite solar cell using self-assembled monolayers
論文目次 Table of contents
Abstract…………………………………………………………………………………………….i
Acknowledgment…………………………………………………………………………………iii
Table of content…………………………………………………………………………………...iv
List of figure………………………………………………………………………………………vi
List of Tables……………………………………………………………………………………...xi
Abbreviations………………………………………………………………………………..…..xiii
Chapter 1: Introduction 1
1.1 Basics of solar cells 1
1.1.1 Working principle of a solar cell 1
1.1.3 Different generations of solar cells: 3
1.2 Perovskite based solar cells: 6
1.2.1 Perovskite material & crystal structure: 6
1.2.2 Perovskite-based solar cells 7
1.2.3 Device architectures 8
1.3 Self-assembled monolayer (SAM): 11
1.3.1 SAM formation: 11
1.3.2 Methods of preparation of SAM 12
1.3.3 Types of SAM and binding substrates: 13
1.3.4 Phosphonic acid SAM: 14
1.3.5 SAM in electronic devices: 15
1.3.6 SAM in perovskite solar cells: 16
1.4 Tandem solar cells 17
1.4.1 Working Principle of TSCs 17
1.4.2 Types of tandem solar cells: 18
1.4.3 All Perovskite TSCs 21
1.4.3.1 Perovskite materials for TSC: 22
1.4.3.2 Recombination layer in TSCs 23
Chapter 2: Experimental section 25
2.1 Materials: 25
2.2 Single junction solar cell fabrication 26
2.2.1 NiOx preparation: 26
2.2.2 SAM preparation on NiOx and ITO surface: 26
2.2.3 PDMS stamp preparation 27
2.2.4 Device fabrication for NiOx based devices: 27
2.2.5 Stamp-transfer preparation of perovskite layer on ITO and SAM-modified ITO surface 28
2.3 Tandem solar cell preparation 28
2.4 Characterization: 28
Chapter 3: Self-assembled monolayer modification of nickel oxide hole-transport layer in inverted perovskite solar cells 30
3.1 Introduction 31
3.2 Results and discussion: 33
Chapter 4. Interface modulation of HTL-free inverted perovskite solar cells 47
4.1 Introduction: 48
4.2 Results and discussion: 50
Chapter 5. Tandem solar cells 64
5.1 Results and discussion: 65
Chapter 6 Conclusion 71
6.1 Conclusion of NiOx based devices 71
6.2 Conclusion on ITO and modified ITO based devices 72
6.3 Conclusion on Tandem solar cells 72
References: 87
參考文獻 1. Tao, Y. Screen‐printed front junction n‐type silicon solar cells. in Printed Electronics - Current Trends and Applications (InTech, 2016).
2. Olaleru, S. A., Kirui, J. K., Wamwangi, D., Roro, K. T. & Mwakikunga, B. Perovskite solar cells: The new epoch in photovoltaics. Sol. Energy 196, 295–309 (2020).
3. Best research-cell efficiency chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html.
4. Katz, E. A. Perovskite: Name puzzle and german‐russian odyssey of discovery. Helv. Chim. Acta 103, e2000061 (2020).
5. Giustino, F. & Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016).
6. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).
7. Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 2017 112 1, 1–18 (2017).
8. Babu, R., Giribabu, L. & Singh, S. P. Recent advances in halide-based perovskite crystals and their optoelectronic applications. Cryst. Growth Des. 18, 2645–2664 (2018).
9. Sun, J. et al. Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv. Sci. 5, 1700780 (2018).
10. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science (80-. ). 358, 745–750 (2017).
11. Chen, Q. et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015).
12. Kovalenko, M. V, Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).
13. Parrott, E. S. et al. Interplay of structural and optoelectronic properties in formamidinium mixed tin–lead triiodide perovskites. Adv. Funct. Mater. 28, 1802803 (2018).
14. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
15. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016 153 15, 247–251 (2016).
16. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
17. Kim, H.-S. et al. Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 6, 4633–4639 (2015).
18. L, M., J, Y., TF, G. & Y, Y. Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155–165 (2016).
19. Hu, Q. et al. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano 8, 10161–10167 (2014).
20. D, L., J, Y. & TL, K. Compact layer free perovskite solar cells with 13.5% efficiency. J. Am. Chem. Soc. 136, 17116–17122 (2014).
21. Prochowicz, D. et al. Mechanosynthesis of pure phase mixed-cation MAxFA1−xPbI3 hybrid perovskites: photovoltaic performance and electrochemical properties. Sustain. Energy Fuels 1, 689–693 (2017).
22. Chen, Q. et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015).
23. Aharon, S., Cohen, B. El & Etgar, L. Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J. Phys. Chem. C 118, 17160–17165 (2014).
24. Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y. & Wei, S.-H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).
25. Choi, K. et al. A short review on interface engineering of perovskite solar cells: a self-assembled monolayer and its roles. Sol. RRL 4, 1900251 (2020).
26. Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (2002).
27. Ali, F., Roldán‐Carmona, C., Sohail, M. & Nazeeruddin, M. K. Applications of self‐assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10, 2002989 (2020).
28. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).
29. Qiao, R. & Zuo, L. Self-assembly monolayers boosting organic–inorganic halide perovskite solar cell performance. J. Mater. Res. 33, 387–400 (2018).
30. Eric L. Hanson, Jeffrey Schwartz, *, Bert Nickel, Norbert Koch, and & Danisman, M. F. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J. Am. Chem. Soc. 125, 16074–16080 (2003).
31. Tidswell, I. M. et al. X‐ray grazing incidence diffraction from alkylsiloxane monolayers on silicon wafers. J. Chem. Phys. 95, 2854 (1998).
32. Gawalt, E. S., Avaltroni, M. J., Koch, N. & Schwartz, J. Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir 17, 5736–5738 (2001).
33. Hotchkiss, P. J. et al. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc. Chem. Res. 45, 337–346 (2012).
34. Paniagua, S. A. et al. Phosphonic acids for interfacial engineering of transparent conductive oxides. (2016) doi:10.1021/acs.chemrev.6b00061.
35. G, G., A, F. & SJ, S. Engineering and design in the bioelectrochemistry of metalloproteins. Curr. Opin. Struct. Biol. 11, 491–499 (2001).
36. Dimitrakopoulos, C. D., & Malenfant, P. R. Organic thin film transistors for large area electronics. Advanced materials, 14(2), 99-117 (2002).
37. Chua, L.-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nat. 2005 4347030 434, 194–199 (2005).
38. Pernstich, K. P. et al. Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 96, 6431 (2004).
39. Lazzerini, G. M. et al. Increased efficiency of light-emitting diodes incorporating anodes functionalized with fluorinated azobenzene monolayers and a green-emitting polyfluorene derivative. Appl. Phys. Lett. 101, 153306 (2012).
40. Wojciechowski, K. et al. Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano 8, 12701–12709 (2014).
41. Yang, G. et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. J. Mater. Chem. A 5, 1658–1666 (2017).
42. Bai, Y. et al. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 2016 71 7, 1–9 (2016).
43. Fang Chen, Xiulan Li, Joshua Hihath, Zhifeng Huang, and & Tao*, N. Effect of Anchoring Groups on Single-Molecule Conductance:  Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).
44. Zhang, L. & Cole, J. M. Anchoring Groups for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 7, 3427–3455 (2015).
45. Hotchkiss, P. J. et al. Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study. Adv. Mater. 21, 4496–4501 (2009).
46. Singh, N. & Tao, Y. Effect of surface modification of nickel oxide hole‐transport layer via self‐assembled monolayers in perovskite solar cells. Nano Sel. nano.202100004 (2021).
47. Khodabakhsh, S. et al. Using Self-Assembling Dipole Molecules to Improve Hole Injection in Conjugated Polymers. Adv. Funct. Mater. 14, 1205–1210 (2004).
48. Mingorance, A. et al. Interfacial Engineering of Metal Oxides for Highly Stable Halide Perovskite Solar Cells. Adv. Mater. Interfaces 5, 1800367 (2018).
49. Liu, K. et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ. Sci. 11, 3463–3471 (2018).
50. J, W. et al. Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer. ACS Appl. Mater. Interfaces 10, 5511–5518 (2018).
51. Wu, J.-R. et al. The Way to Pursue Truly High-Performance Perovskite Solar Cells. Nanomater. 2019, Vol. 9, Page 1269 9, 1269 (2019).
52. Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).
53. Rech, B., Jäger, K., Korte, L. & Albrecht, S. Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Opt. Express, Vol. 25, Issue 12, pp. A473-A482 25, A473–A482 (2017).
54. Liang, T. S. et al. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ. Sci. 12, 116–148 (2019).
55. Chantana, J. et al. Effect of alkali treatment on photovoltaic performances of cu(in,ga)(s,se)2 solar cells and their absorber quality analyzed by urbach energy and carrier recombination rates. ACS Appl. Energy Mater. 3, 1292–1297 (2020).
56. Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).
57. J, X. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1091–1097 (2020).
58. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 2020 511 5, 870–880 (2020).
59. Borriello, I., Cantele, G. & Ninno, D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008).
60. Jacobsson, T. J. et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9, 1706–1724 (2016).
61. J. L. K., Martin*, J. D. & Mitzi, D. B. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44, 4699–4705 (2005).
62. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).
63. Karlin, K. D. Progress in inorganic chemistry. Volume 48. 603 (1999).
64. Gao, P., Grätzel, M. & Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014).
65. P, D. & T, B. A long-term view on perovskite optoelectronics. Acc. Chem. Res. 49, 339–346 (2016).
66. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).
67. Sutton, R. J. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016).
68. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2014).
69. Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm(2). J. Phys. Chem. Lett. 7, 161–6 (2016).
70. Löper, P. et al. Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2014).
71. DP, M. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).
72. Q, L., A, A., PL, B. & P, M. Organohalide perovskites for solar energy conversion. Acc. Chem. Res. 49, 545–553 (2016).
73. Zardetto, V. et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain. Energy Fuels 1, 30–55 (2017).
74. K, W. et al. C60 as an efficient n-type compact layer in perovskite solar cells. J. Phys. Chem. Lett. 6, 2399–2405 (2015).
75. Werner, J. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 1, 474–480 (2016).
76. Chen, B. et al. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells. Adv. Energy Mater. 6, 1601128 (2016).
77. Guo, F. et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7, 1642–1649 (2015).
78. X, L. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
79. Song, J., Hu, W., Li, Z., Wang, X.-F. & Tian, W. A double hole-transport layer strategy toward efficient mixed tin-lead iodide perovskite solar cell. Sol. Energy Mater. Sol. Cells 207, 110351 (2020).
80. Gao, L. & Yang, G. Organic‐inorganic halide perovskites: from crystallization of polycrystalline films to solar cell applications. Sol. RRL 4, 1900200 (2020).
81. Diau, E. W.-G., Jokar, E. & Rameez, M. Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Lett. 4, 1930–1937 (2019).
82. Kim, Y. C. et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6, 1502104 (2016).
83. Jiang, Q. et al. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew. Chemie Int. Ed. 54, 7617–7620 (2015).
84. Song, J., Hu, W., Li, Z., Wang, X.-F. & Tian, W. A double hole-transport layer strategy toward efficient mixed tin-lead iodide perovskite solar cell. Sol. Energy Mater. Sol. Cells 207, 110351 (2020).
85. Pérez-del-Rey, D. et al. Molecular passivation of MoO3 : Band alignment and protection of charge transport layers in vacuum-deposited perovskite solar cells. Chem. Mater. 31, 6945–6949 (2019).
86. Tumen-Ulzii, G. et al. Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Commun. Mater. 1, 31 (2020).
87. Chang, H.-C., Lee, W.-Y., Tai, Y., Wu, K.-W. & Chen, W.-C. Improving the characteristics of an organic nano floating gate memory by a self-assembled monolayer. Nanoscale 4, 6629 (2012).
88. Lin, F.-J., Chen, H.-H. & Tao, Y.-T. Molecularly aligned hexa- peri -hexabenzocoronene films by brush-coating and their application in thin-film transistors. ACS Appl. Mater. Interfaces 11, 10801–10809 (2019).
89. Das, S., Joslin, J. & Alford, T. L. Self-assembled monolayer modified ITO in P3HT:PC61BM organic solar cells with improved efficiency. Sol. Energy Mater. Sol. Cells 124, 98–102 (2014).
90. Casalini, S., Bortolotti, C. A., Leonardi, F. & Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 46, 40–71 (2017).
91. Ma, H., Yip, H.-L., Huang, F. & Jen, A. K. Y. Interface engineering for organic electronics. Adv. Funct. Mater. 20, 1371–1388 (2010).
92. Yan, J., Lin, Z., Cai, Q., Wen, X. & Mu, C. Choline chloride-modified sno 2 achieving high output voltage in mapbi 3 perovskite solar cells. ACS Appl. Energy Mater. 3, 3504–3511 (2020).
93. Zhu, T., Su, J., Labat, F., Ciofini, I. & Pauporté, T. Interfacial engineering through chloride-functionalized self-assembled monolayers for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 12, 744–752 (2020).
94. Han, J. et al. Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. J. Mater. Chem. A 8, 2105–2113 (2020).
95. Han, F. et al. Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells. Electrochim. Acta 296, 75–81 (2019).
96. Liu, L. et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790–1793 (2015).
97. Abate, S. Y., Huang, D.-C. & Tao, Y.-T. Surface modification of TiO2 layer with phosphonic acid monolayer in perovskite solar cells: Effect of chain length and terminal functional group. Org. Electron. 78, 105583 (2020).
98. Zuo, L. et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674–2679 (2015).
99. Jeng, J. Y. et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107–4113 (2014).
100. Hu, Z. et al. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Appl. Surf. Sci. 441, 258–264 (2018).
101. Teo, S. et al. The role of lanthanum in a nickel oxide-based inverted perovskite solar cell for efficiency and stability improvement. ChemSusChem 12, 518–526 (2019).
102. Troughton, J., Hooper, K. & Watson, T. M. Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules. Nano Energy 39, 60–68 (2017).
103. Seo, S. et al. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 8, 11403–11412 (2016).
104. Mali, S. S., Kim, H., Shim, S. E. & Hong, C. K. A solution processed nanostructured p-type NiO electrode for efficient inverted perovskite solar cells. Nanoscale 8, 19189–19194 (2016).
105. Shin, S. S., Lee, S. J. & Seok, S. Il. Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29, 1900455 (2019).
106. Zhang, Y.-W., Cheng, P.-P., Liang, J.-M., Tan, W.-Y. & Min, Y. Morphology control of the perovskite thin films via the surface modification of nickel oxide nanoparticles layer using a bidentate chelating ligand 2,2’-Bipyridine. Synth. Met. 258, 116197 (2019).
107. Wang, Q. et al. Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 10, 3794–3803 (2017).
108. Quiñones, R., Raman, A. & Gawalt, E. S. Functionalization of nickel oxide using alkylphosphonic acid self-assembled monolayers. Thin Solid Films 516, 8774–8781 (2008).
109. Gao, W., Dickinson, L., Grozinger, C., Morin, F. G. & Reven, L. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12, 6429–6435 (1996).
110. Koh, S. E. et al. Phenylphosphonic acid functionalization of indium tin oxide: surface chemistry and work functions. Langmuir 22, 6249–6255 (2006).
111. McClain, W. E., Florence, P. R., Shu, A., Kahn, A. & Schwartz, J. Surface dipole engineering for conducting polymers. Org. Electron. 14, 411–415 (2013).
112. Weidler, N. et al. X-ray photoelectron spectroscopic investigation of plasma-enhanced chemical vapor deposited NiOx , NiOx(OH)y , and CoNiOx(OH)y : Influence of the chemical composition on the catalytic activity for the oxygen evolution reaction. J. Phys. Chem. C 121, 6455–6463 (2017).
113. Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006).
114. Nesbitt, H. W., Legrand, D. & Bancroft, G. M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 27, 357–366 (2000).
115. Kedem, N. et al. Morphology-, synthesis- and doping-independent tuning of ZnO work function using phenylphosphonates. Phys. Chem. Chem. Phys. 16, 8310 (2014).
116. Lebedev, A. M. et al. On the interaction of self-assembled C60F18 polar molecules with the Ni(100) surface. J. Surf. Investig. X-ray, Synchrotron Neutron Tech. 11, 814–822 (2017).
117. Salim, T. et al. Perovskite-based solar cells: Impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015).
118. Tress, W. et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 11, 151–165 (2018).
119. Cao, W., Li, J., Chen, H. & Xue, J. Transparent electrodes for organic optoelectronic devices: a review. J. Photonics Energy 4, 040990 (2014).
120. Hecht, D. S., Hu, L. & Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials vol. 23 1482–1513 (2011).
121. Turak, A. dewetting stability of ITO surfaces in organic optoelectronic devices. in Optoelectronics - Advanced Materials and Devices (InTech, 2013). doi:10.5772/52417.
122. Khan, M. Z. H. Effect of ITO surface properties on SAM modification: A review toward biosensor application. Cogent Eng. 3, 1170097 (2016).
123. You, Z. Z., Dong, J. Y. & Fang, S. Du. Surface modification of indium-tin-oxide anode by oxygen plasma for organic electroluminescent devices. Phys. status solidi 201, 3221–3227 (2004).
124. Li, C. N. et al. Improved performance of OLEDs with ITO surface treatments. Thin Solid Films 477, 57–62 (2005).
125. Kim, J. S., Cacialli, F., Cola, A., Gigli, G. & Cingolani, R. Increase of charge carriers density and reduction of Hall mobilities in oxygen-plasma treated indium–tin–oxide anodes. Appl. Phys. Lett. 75, 19–21 (1999).
126. Tao, Y. T. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. J. Am. Chem. Soc. 115, 4350–4358 (1993).
127. Chang, S.-C., Chao, I. & Tao, Y.-T. Structure of self-assembled monolayers of aromatic-derivatized thiols on evaporated gold and silver surfaces: implication on packing mechanism. J. Am. Chem. Soc. 116, 6792–6805 (1994).
128. Appleyard SF, Day SR, Pickford RD, Willis MR. Organic electroluminescent devices: Enhanced carrier injection using SAM derivatized ITO electrodes, J. Mater. Chem. 10 169-73 (2000).
129. Sun, X., Di, C. an & Liu, Y. Engineering of the dielectric-semiconductor interface in organic field-effect transistors. Journal of Materials Chemistry vol. 20 2599–2611 (2010).
130. Lin, F. J., Chen, H. H. & Tao, Y. T. Molecularly aligned hexa- peri-hexabenzocoronene films by brush-coating and their application in thin-film transistors. ACS Appl. Mater. Interfaces 11, 10801–10809 (2019).
131. Tseng, C.-W., Huang, D.-C. & Tao, Y.-T. Organic transistor memory with a charge storage molecular double-floating-gate monolayer. ACS Appl. Mater. Interfaces 7, 9767–9775 (2015).
132. Gu, Z. et al. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. J. Mater. Chem. A 3, 24254–24260 (2015).
133. Mangalam, J. et al. Modification of NiOx hole transport layers with 4-bromobenzylphosphonic acid and its influence on the performance of lead halide perovskite solar cells. J. Mater. Sci. Mater. Electron. 30, 9602–9611 (2019).
134. Akın Kara, D. et al. Enhanced device efficiency and long-term stability via boronic acid-based self-assembled monolayer modification of indium tin oxide in a planar perovskite solar cell. ACS Appl. Mater. Interfaces 10, 30000–30007 (2018).
135. Xiang, H. & Komvopoulos, K. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces. J. Appl. Phys. 113, 224505 (2013).
136. Mohapatra, A. et al. Solution-processed perovskite/perovskite heterostructure via a grafting-assisted transfer technique. ACS Appl. Energy Mater. 4, 1962–1971 (2021).
137. Yu, S.-Y., Chang, J.-H., Wang, P.-S., Wu, C.-I. & Tao, Y.-T. Effect of ITO Surface modification on the OLED device lifetime. Langmuir 30, 7369–7376 (2014).
138. Wojciechowski, K. et al. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014).
139. Paniagua, S. A. et al. Phosphonic acid modification of indium−tin oxide electrodes: combined xps/ups/contact angle studies. J. Phys. Chem. C 112, 7809–7817 (2008).
140. Cheng, H., Li, Y., Zhang, M., Zhao, K. & Wang, Z. S. Self-assembled ionic liquid for highly efficient electron transport layer-free perovskite solar cells. ChemSusChem 13, 2779–2785 (2020).
141. González-Torres, M. et al. XPS Study of the chemical structure of plasma biocopolymers of pyrrole and ethylene glycol. Adv. Chem. 2014, 1–8 (2014).
142. Arkan, E. et al. Effect of functional groups of self assembled monolayer molecules on the performance of inverted perovskite solar cell. Mater. Chem. Phys. 254, 123435 (2020).
143. Hanson, E. L., Guo, J., Koch, N., Schwartz, J. & Bernasek, S. L. Advanced surface modification of indium tin oxide for improved charge injection in organic devices. J. Am. Chem. Soc. 127, 10058–10062 (2005).
144. Wojciechowski, K. et al. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014).
145. Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377 (2014).
146. Chhillar, P., Dhamaniya, B. P., Dutta, V. & Pathak, S. K. Recycling of perovskite films: Route toward cost-efficient and environment-friendly perovskite technology. ACS Omega 4, 11880–11887 (2019).
指導教授 陶雨臺(Yu-Tai Tao) 審核日期 2021-10-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明