摘要(英) |
Due to the impact of global climate change and fragile geological background, the slope-land disasters such as landslides and debris flows caused by highly intense rainstorms occur more frequently in Taiwan. Alluvial fans at foothills in Taiwan often accommodate villages and infrastructures, and are high-risk areas prone to the landslides and debris flows. In this study, the formation and the process of alluvial fans is explored by using experimental study with a small-scale flume basin model equipping with silo, laser lights and cameras. By changing the sediment concentration (i.e., the ratio of sediment discharge(Qs) to water discharge (QW)) and the base-level water depths, the longitudinal profiles, cross profiles, fan shapes, angles of topset and foreset angle have been analyzed. The size of the silo opening and particle size control the particle discharge. The longitudinal profiles of the fans depict a concave shape, while the lateral profiles are convex. The angles of topset slope decrease with decreasing sediment concentration, while the foreset slopes with tail water are close to the friction angle of the sediment. Overall, the effect of channel slope on the formation of fan is less than sediment concentration and the base level. |
參考文獻 |
[1] 林枏恩 (2013),「土石流形成沖積扇過程之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[2] 吳侑謙 (2015),「顆粒特性及水流條件對顆粒體運動及淤積型態之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。[3] 吳俊銓 (2012),「山洪濁流形成沖積扇之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[4] 張瑞津、石再添、楊淑君、林譽方、陳翰霖 (1994),「花東縱谷沖積扇的地形學研究」,師大地理研究報告,第21期.
[5] 張瑞津 (1997),「臺灣沖積扇之分布、形態及地形意義」,地質17 卷,1-2 期,69-93.
[6] 曾文毅 (2014),「不同輸砂濃度及基準水面條件下之沖積扇形態分析」,碩士論文,國立中央大學土木工程研究所,中壢。
[7] 黃郅軒 (2011),「儲槽內顆粒流動與發聲特性之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[8] 孫稜翔 (2011),「八卦臺地山麓沖積扇型態之研究」,地理學報,第六十一期:81-104.
[9] Blair T. C. and McPherson J. G. (1994),“Alluvial fans and their natural distinction from rivers based on morphology,, hydraulic processes, sedimentary processes and facies assemblages,, J. Sed. Res., A64(3), 450-489.
[10] Bull W. B. (1964),“Geomorphology of segmented alluvial fans in western Fresno County, California. In: US Geological Survey,, Professional Papers, 352, 89–129.
[11] Chant L., Pease P. ,Tchakerian V. (1999), “Modelling Alluvial Fan Morphology,, Earth Surf. Process. Landforms24, 641-652.
[12] Clarke L., Quine T., Nicholas A. (2010),“An experimental investigation of autogenic behaviour during alluvial fan evolution,, Geomorphology 115 (2010) 278–285.
[13] Giles P.(2010), “Investigating the use of alluvial fan volume to represent fan size in morphometric studies,, Geomorphology 121 (2010) 317–328.
[14] Guerit L., Etivier F., Devauchelle O, Lajeunesse E.and Barrier L. (2014), “Laboratory alluvial fans in one dimension,, Physical Review E90, 022203.
[15] Iverson R. M. , Schilling S. P., Vallance J. W. (1998),“Objective delineation of lahar-inundation hazard zones,, GSA Bulletin; August; v. 110; no. 8; p. 972–984.
[16] Kim W. and Muto T. (2007), “Autogenic response of alluvial bedrock transition to base-level variation: Experiment and theory,, Journal Of Geophysical Research, VOL. 112, F03S14.
[17] Kochel, R.C.(1990),“Humid fans of the Appalachian Mountains,, Alluvial Fans: A Field Approach, pp 109-129.
[18] Miller K., Reitz D. and Jerolmack D. (2014), “Generalized sorting profile of alluvial fans,, Research Letter 10.1002/2014GL060991.
[19] Nanninga P. and Wasson R. (1985), “Caiculation of the Volume of an Alluvial Fan,, Mathematical Geology , Vol. 17 , No.1.
[20] Nicholas A., Clarke L. and Quine T. (2009), “A numerical modelling and experimental study of flow width dynamics on alluvial fans,, Earth Surf. Process. Landforms 34, 1985–1993.
[21] Reitz M. and Jerolmack D. (2012), “Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth,, Journal Of Geophysical Research, VOL. 117, F02021. |