博碩士論文 103322066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.145.52.101
姓名 林坦誼(Tan-Yi Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 半圓柱形溫室表面風壓係數之實驗研究
(Experimental Study of Wind Pressure on Semi-circular Greenhouses)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本研究使用風洞實驗研究半圓柱形溫室模型的風力負載,實驗入流流況為紊流邊界層流與均勻流,在不同風向攻角下,利用高頻率的壓力掃描計量測獨棟與連棟半圓柱溫室表面風壓的分佈及瞬間變化,再用甘保機率分佈計算極值風壓,並探討室外紊流強度與陣風風壓係數的關係,以計算建築物的最大風載。研究結果發現:風向角22.5o的最大負壓大於風向角0o時的最大負壓,且時間平均風壓係數符合建築物耐風設計規範(2015)所建議的風壓係數,且平滑表面溫室的最大負壓力大於粗糙表面溫室的最大負壓力。由實驗數據可計算得一個陣風壓力因子g,再利用準穩態假設及耐風設計規範(2015)建議之或實驗量測之時間平均係數可推算出預測極值風壓,此法可預測發生於溫室表面之極值風壓。另外,採用移動平均法後推算求得之極值風壓與陣風壓力因子g皆近似不使用移動平均法,但都大於建築物耐風設計規範所建議的陣風因子G = 1.77。本研究之成果亦顯示當雷諾數大於1.5 x 105,單棟半圓頂溫室的風力係數不再隨雷諾數而變,且單棟溫室的風力係數大於多棟溫室的風力係數。
摘要(英) Abstract
Taiwan is located in the west Pacific typhoon-prone area, and the strong wind during typhoons could bring severe damages to the farm houses and greenhouses. This research uses wind tunnel experiments to study the pressure distribution on semi-circular greenhouses. The instantaneous pressures on the surface of the greenhouse are measured by a multi-channel pressure scanner under different wind directions and arrangements. The experimental results reveal that the time-averaged pressure coefficient of oblique wind (wind direction 22.5o) is larger than that of wind direction normal to the ridge line (wind direction 0o). In addition, although the time-averaged pressure coefficients are within the values suggested by the Wind Code of Taiwan, but the peak pressure is several times larger than the time-average pressure. The gust response factor of the Wind Code is not sufficient to protect the semi-circular greenhouses against the peak pressure on the greenhouse roof. Based on the measured data and the quasi-steady theory, a peak pressure factor, g, was used to predict the peak pressure coefficient Cpeak. The experimental results validate the capability of the peak pressure factor to predict Cpeak. However, the peak pressure factor is dependent on the method to calculate the peak pressure. The peak pressure factor g = 3.81, regardless using moving average or not. But the peak pressure factors Gp is dependent on the turbulence intensity Iu. The results of this study not only provide the needed information for the structural design of the arch-roof greenhouse but also to facilitate a better understanding of the separation phenomenon and peak pressure around circular-bodies.
關鍵字(中) ★ 溫室
★ 風洞實驗
★ 風力負載
★ 極值風壓
關鍵字(英) ★ Greenhouse
★ Wind load
★ Peak pressure
★ Wind tunnel Experiment
★ Pressure coefficient
論文目次 Contents
Abstract I
Contents III
Notation IV
Table Caption V
Figure Caption VI
1. Introduction 1
2. Experimental setup 4
3. Results and discussion 7
3.1 Boundary layer flow 7
3.1.1 Time-averaged Pressure 7
3.1.2 Peak Pressure 8
3.1.3 Internal Pressure 9
3.1.4 Sidewall Pressure 10
3.2 Roughness Effect 11
3.3 Grid-generated turbulent flow 12
3.4 Predicted peak pressure 13
3.5 Multi-span greenhouse 16
3.6 Drag and lift coefficient 18
4. Conclusions 19
References 21
Table 23
Figures 25
參考文獻 References
ASCE (2010) Minimum Design Loads for Buildings and Other Structures, Section 6: Wind Loads, ASCE Standard, No.7-10.
Cebeci, T., Mosinskis, C.J., Smith, A.M.O. Calculation of separation points in incompressible turbulent flows. J. Aircraft. Vol. 9, No. 9, 618.
Chu, C.R. 2006. Introduction to Wind Engineering, Techbook Pub. Co., (In Chinese)
Chu C.R, Chiu YH, Chen YJ, Wang YW, Chou CP. Turbulence effects on the discharge coefficient and mean flow rate of wind-driven cross ventilation. Building and Environment 2009; 44: 2064-2072.
Chu, C.R. and Chiang, P.-H. (2014) Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine. J. of Wind Engineering and Industrial Aerodynamics. Vol.124, 82-89.
Cook, N.J. and Mayne, J.R., 1980. A refined working approach to the assessment of wind loads for equivalent static design. J. of Wind Engineering and Industrial Aerodynamics, Vol. 6, 125-137.
Farivar, D.J., 1981. Turbulent uniform flow around cylinders of finite length. AIAA Journal, 19(3), 275-281.
Holmes, J.D. 2001. Wind Loading on Structures, Spon Press, London, p.356.
Lieblein, J., 1974. Efficient methods of extreme value methodology. National Bureau of Standards, Report 74-602, pp.31.
Lin, Y.J., Miau, J.J., Tu, J.K., Tsai, H.W., 2011. Nonstationary, three-dimensional aspects of flow around circular cylinder at critical Reynolds numbers. AIAA Journal, 49(9), 1857-1870.
Mathews, E.H., Meyer, J.P. 1988. Computation of wind loads on a semicircular greenhouse. J. of Wind Engineering and Industrial Aerodynamics, 29, 225–233.
McComb, W.D. 1990. The Physics of Fluid Turbulence, Oxford University Press, U.K. 47-49.
Miau, J.J., Tsai, H.W., Lin, Y.J., Tu, J.K., Fang, C.H., 2011. Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime. Experiments in Fluids.51, 949-967.
Moriyama, H., Sase, S., Uematsu, Y., Yamaguchi, T. 2010. Wind tunnel study of the interaction of two or three side-by-side pipe-framed greenhouses on wind pressure coefficients, Transaction of the American Society of Agricultural and Biological Engineers, Vol. 53(2), 585-592.
Qiu, Y., Sun, Y., Wu, Y., Tamura, Y. 2014. Modeling the mean wind loads on cylindrical roofs with consideration of the Reynolds number effect in uniform flow with low turbulence. J. of Wind Engineering and Industrial Aerodynamics, 129, 11–21.
Simiu, E., Scanlan, R.H. 1996. Wind Effects on Structures: Fundamentals and Applications to Design, 3rd Edition, John Wiley Inc., p.688.
Uematsu, Y., Nakahara, K., Moriyama, H., Sase, S. 2008. Study of wind loads on pipe-framed greenhouses-external wind pressure coefficients on enclosed structures, J. of the Society of Agricultural Structures, Japan; Vol.39, No.2, 121-132.
Uematsu, Y., and Nakahara K., 2009. Effects of sidewall openings on the wind loads on pipe-framed greenhouses. The Seventh Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan, November 8-12.
Wacker, J., Plate, E. J. 1993. Local peak pressure coefficients for cuboidal buildings and corresponding pressure gust factors. J. of Wind Engineering and Industrial Aerodynamics, 50, 183-192.
Yeung, W.W.H., 2007. Similarity study on mean pressure distributions of cylindrical and spherical bodies. J. of Wind Engineering and Industrial Aerodynamics, 95 (4), 253–266.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2016-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明