博碩士論文 103323047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.142.98.60
姓名 賴璟皜(Ching-How Lai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 TiB2對A201鋁合金微結構、機械與鑄造性質之影響
(Effect of TiB2 on the mechanical, casting properties and microstructure of A201 alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) A201(Al-Cu-Mg-Ag)合金為可熱處理型高強度鋁合金,藉由Ω相及θ^′相的析出達到析出強化的效果。由文獻得知於鋁合金中添加Al-Ti和Al-B母合金能在鑄造時以原位(in-situ)方式生成TiB_2顆粒,且TiB_2顆粒為異質成核點,使晶粒產生細化效果,進而提升合金機械性質。
  故本研究探討添加TiB_2對A201鋁合金之微結構、機械性質與鑄造性質之影響。實驗設計三種合金,分別為合金A(A201)、合金B(A201+1wt%TiB_2)、合金C(A201+2wt%TiB_2),試片經過T7時效處理,利用光學顯微鏡(OM)、X-射線繞射分析(XRD)、掃描式電子顯微鏡(SEM)、導電度(%IACS)、硬度試驗、拉伸試驗(Tensile Test)等方法,分析添加TiB_2對合金微結構的變化與材料性質之關係。

  結果顯示,A201合金添加TiB_2時,TiB_2顆粒會成為鋁基地異質成核點使晶粒產生細化。三種合金經T7時效處理後造成Ω及θ^′強化相析出,使得合金硬度及強度提升。而合金B和合金C因TiB_2於基地中有散佈強化效果,合金硬度及強度隨TiB_2含量的提升而增高,且延性也同時提升。
摘要(英) A201(Al-Cu-Mg-Ag) alloy is classified as a heat treatable high strength aluminum alloys ,the precipitation strengthening effect is achieved by the precipitation of Ω phase and θ^′phase. It has been found that addition of Al-Ti and Al-B master alloys in aluminum alloys can form in-situ TiB_2 particles during casting.TiB_2 particles act as the heterogeneous sites during solidification lead to the reduction in grain size ,thus improved the mechanical properties of the alloy.

Effect of TiB_2 additions on microstructure, mechanical and casting properties of A201 alloys were investigated. Experimental design into three alloys, respectively, alloy A(A201), alloy B(A201+1wt%TiB_2), alloy C (A201+2wt%TiB_2). After T7 treatment, using Optical Microscopy(OM), Scanning Electron Microscopy (SEM), X-ray diffraction(XRD), Electrical Conductivity Meter(%IACS), Rockwell Hardness Test and Tensile Test analyze the effect of TiB_2 addition on microstructures and properties of alloys.

  Experimental results indicate that addition of TiB_2 in A201 alloys produces grain refinement due to TiB_2 particles can act as the heterogeneous sites during solidification. After T7 treatment, the hardness and strength of these three alloys increase by the precipitation of Ω and θ^′phase. For alloy B and alloy C, due to TiB_2 particles disperse in the Al matrix enhance the hardness and strength with increase in the amount of TiB_2; furthermore, ductility also improved.

關鍵字(中) ★ 鋁銅合金
★ TiB2
★ 複合材料
★ 原位生成
關鍵字(英) ★ Al-Cu alloys
★ TiB2
★ composites
★ in-situ
論文目次 總目錄
摘要 III
Abstract IV
誌謝 V
總目錄 VI
圖目錄 IX
表目錄 XI
一、前言與文獻回顧 1
1.1 A201合金簡介 1
1.1.1鋁合金簡介 1
1.1.2 A201析出強化機制 2
1.2熱裂簡介 3
1.2.1熱裂理論 3
1.2.2影響熱裂因素 6
1.3複合材料簡介 7
1.3.1金屬基複合材料 8
1.3.2鋁基複合材料 9
1.3.3顆粒強化鋁基複合材料 9
1.4 "TiB2" 基本性質 9
1.5 "TiB2" 於熔融鋁中的製備 11
1.5.1 Ex-situ方式 11
1.5.2 In-situ方式 12
1.6文獻回顧 16
1.7 研究背景與目的 18
二、實驗方法與步驟 19
2.1材料熔配方法 20
2.2熱處理 21
2.3微結構觀察與分析 22
2.3.1光學顯微鏡(Optical Microscopy) 22
2.3.2掃描式電子顯微鏡(Scanning Electron Microscopy)22
2.3.3導電度(Electrical Conductivity) 23
2.3.4 X光繞射分析(X-ray diffraction) 23
2.3.5電子微探儀(Electron Probe Microanalyzer) 23
2.4機械性質分析 23
2.4.1硬度試驗(Hardness) 23
2.4.2拉伸試驗(Tensile Test) 24
2.5熱裂分析(Hot Tearing) 24
三、結果與討論 26
3.1微結構分析 26
3.1.1 OM微結構觀察 26
3.1.2 X光繞射分析 30
3.1.3 SEM微結構觀察與EPMA成分分析 31
3.2 機械性質分析 39
3.2.1硬度試驗 39
3.2.2 拉伸試驗 40
3.3 熱裂分析 45
四、結論 47
五、未來研究方向 48
六、參考文獻 49

圖目錄
圖1.1熱裂理論模型 5
圖1.2 複合材料分類 8
圖1.3單晶"TiB2" 的對稱六邊形結構 10
圖1.4戒指狀"TiB2" 顆粒形成機制示意圖 16
圖1.5合金硬度對時效時間圖 18
圖2.1實驗流程圖 19
圖2.2金屬模外觀及試片取樣位置 21
圖2.3 ASTM B557M−15標準拉伸試棒規格 24
圖2.4熱裂分析模具 25
圖3.1合金之鑄態金相圖及晶粒結構圖 27
圖3.2合金之固溶金相圖及晶粒結構圖 29
圖3.3合金鑄態之X光繞射分析 31
圖3.4合金C針對TiB_2顆粒及Al_3 Ti經電子微探儀分析後之Mapping影像圖 33
圖3.5合金A與合金C鑄態之SEM圖 34
圖3.6合金C經固溶處理之SEM圖 34
圖3.7合金經人工時效處理之SEM拉伸破斷面巨觀組織 43
圖3.8合金經人工時效處理之SEM拉伸破斷面微觀組織 44
圖3.9合金熱裂分析結果 46  

表目錄
表1.1 A201合金成分表 1
表1.2 Al-Cu-Mg-(Ag)合金析出相隨Cu/Mg比改變 3
表1.3 "TiB2" 特性 10
表2.1合金成分分析表(wt%) 20
表3.1三種合金經EPMA點分析鋁基地之成分表 35
表3.2合金A和合金C鑄態之各元素含量電子微探儀分析結果36
表3.3合金C固溶後之各元素含量電子微探儀分析結果 37
表3.4合金各種狀態下之導電度量測值(%IACS) 38
表3.5合金於各種狀態下之硬度量值(HRB) 40
表3.6合金經T7時效處理後之機械性質數據彙整表 42

參考文獻 [ANA] Anandkumar, R., Almeida, A. and Vilar, R., “Wear behavior of Al–12Si/TiB2 coatings produced by laser cladding”, Surface and Coatings Technology, Vol.205(13), pp.3824-3832 (2011)

[AST] ASTM B917/B917M−12, “Standard Practice for Heat Treatment of Aluminum-Alloy Castings from All Processes”, pp.5(2012)

[AST2] ASTM B557M−15, “Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)”, pp.6(2015)

[BAS] Basu, B., Raju, G. and Suri, A., “Processing and properties of monolithic TiB2 based materials”, International materials reviews, Vol.51(6), pp.352-374(2006)

[BIC] L. Bichler, A. Elsayed, K. Lee, “Influence of Mold and Pouring Temperatures on Hot Tearing Susceptibility of AZ91D Magnesium Alloy”, International Journal of Metalcasting, vol.2(1), pp. 43-54. (2008)

[CAM] Campbell, J., “Castings”, Oxford: Butterworth-Heinemann(1991)

[CHE] Chen, Z., Chen, Y., An, G., Shu, Q., Li, D. and Liu, Y. , “Microstructure and properties of in situ Al/TiB2 composite fabricated by in-melt reaction method”, Metallurgical and Materials Transactions A, Vol31(8),pp.1959-1964.(2000)

[DAV] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum alloys”, ASM International Materials Park, Ohio, pp.25(1994)

[DAV2] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum alloys”, ASM International Materials Park, Ohio, pp.706-707(1994)

[DAV3] Davies, P., Kellie, J. and Wood, J., “UK patent 2257985A”, ASM, Paris, September(1992)

[DRA] Dragut, D. V., Moldovan, P. and Butu, M., “Thermodynamics and Mechanism of Metalothermic Reduction of Molten Salts”, Revista de Chimie, Vol.63(9),pp.925-928(2012)


[EMA] M. Emamy, M. Mahta and J. Rasizadeh, “Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique”, Composites Science and Technology, Vol.66, pp.1063–1066.(2006)

[FAN] Fan, T., Yang, G. and Zhang, D., “Thermodynamic effect of alloying addition on insitu reinforced TiB2/Al composites”, Metallurgical and Materials Transactions A, Vol.36(1), pp.225-233(2005)

[FEN] Feng, C. and Froyen, L., “Microstructures of in situ Al/TiB2 MMCs prepared by a casting route”, Journal of materials Science, Vol.35(4), pp.837-850(2000)

[FJE] Fjellstedt, J. and Jarfors, A. E., “On the precipitation of TiB2 in aluminum melt from the reaction with KBF4 and K2TiF6”, Materials Science and Engineering: A, Vol.413, pp.527-532(2005)

[GAO] Q. Gao, S. Wu, S. Lü, X. Duan, Z. Zhong, “Preparation of in-situ TiB2 and Mg2Si hybrid particulates reinforced Al-matrix composites”, Journal of Alloys and Compounds, Vol.651, pp.521-527(2016)

[HON] K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom Probe Stuty of the Precipitation Process in Al-Cu-Mg-Ag Alloys”, Acta Metall. Mater., vol.41, pp.829-838(1993)

[JAV] A. Javadi, C. Cao and X. Li, “Manufacturing of Al-TiB2 Nanocomposites by Flux-Assisted LiquidState Processing”, Procedia Manufacturing ,Vol.10, pp.531 – 535( 2017 )

[KAR] M. Karbalaei Akbari, H. R. Baharvandi and K. Shirvanimoghaddam, “Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites”, Materials and Design, Vol.66, pp.150-161.(2015)

[KNO] K. M. Knowles and W. M. Stobbs, “The Structure of{100}Age-hardening Precipitates in Al-Cu-Mg-Ag Alloys”, Acta Cryst,Vol.B44, pp.207-227(1993)

[LAK] Lakshmi, S., Lu, L. and Gupta, M., “In situ preparation of TiB2 reinforced Al based composites”, Materials Processing Technology, Vol.73(1), pp.160-166(1998)


[LI] S. Li, K. Sadayappan and D. apelian, “Role of Grain Refinement in the Hot Tearing of Cast Al-Cu Alloy, Metallurgical And Materials Transacions, Vol.44B, pp.614-623.(2013)

[MAH] El-Mahallawy, N., Taha, M. A., Jarfors, A. E., and Fredriksson, H., “On the reaction between aluminium K2TiF6 and KBF4”, alloys and compounds, Vol.292(1), pp.221-229(1999).

[MAN] A. Mandal, R. Maiti, M. Chakraborty and B. S. Murty, “Effect of TiB2 particles on aging response of Al–4Cu alloy”, Materials Science and Engineering:A, Vol.386, pp.296–300(2004)

[MAT] F. Matsuda, K. Nakata, and Y. Shimokusu, “Effect of additional element on weld solidification crack susceptibility of Al-Zn-Mg alloy ”, Transactions of JWR, vol.12, p.81–87(1983)

[MOL] Moldovan, P., Butu, M., Popescu, G., Buzatu, M., Usurelu, E., Soare, V. and Mitrica, D., “Thermodynamics of Interactions in Al-K2TiF6-KBF4 System”, Revista de Chimie, Vol.61(9), pp.828-832(2010)

[MUN] R.G. Munro, Material Properties of Titanium Diboride”, National Institute of Standards and Technology, Vol.105, pp.709-720(2000)

[MUR] B.S. Murty, S.A. Kori, M. Chakrabort, “Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying”, Int. Mater. Rev. 47,pp.3-29(2002)

[NAB] Nabawy A. M., Chen X. G., “Fabrication of Al−TiB2 nanocomposites
by flux-assisted melt stirring”, Metall Mater Trans B, Vol.46, pp.1596−1602(2015)

[PEL] Pellini, W. S., "Strain Theory of Hot Tearing," Foundry, Vol.80, pp.125-199 (1952)

[POL] I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge and S. Rogers, “After Concorde:Evaluation of creep resistant Al-Cu-Mg-Ag Alloys”, Materials Science and Technology, Vol.15, pp.861-868(1999)

[RAM] C.S. Ramesh, Abrar Ahamed , B.H. Channabasappa , R. Keshavamurthy , “Development of Al 6063–TiB2 in situ composites, Materials and Design, Vol.31, pp.2230–2236 (2010)

[ROS] R.A. Rosenberg, M.C. Flemings and H.F. Taylor, “Nonferrous Binary Alloys Hot-Tearing”, AFS Trans, Vol.69, p.518-528(1960)

[SAV] Saveiko, V. N., “Theory of Hot Tearing”, Russian Castings Production, Vol.11, pp.453-456(1961)

[TEE] K. Tee, L. Lu and M. Lai, “In situ stir cast Al–TiB2 composite: processing and mechanical properties”, Materials science and technology, Vol.17(2), pp.201-206 (2001)

[TEE2] K. Tee, L. Lu and M. Lai, “In situ processing of Al–TiB2 composite by the stir casting technique”, Materials Processing Technology, Vol.89, pp.513-519(1999)

[WYS] R. K. Wyss and R. E. Sanders, “Microstructure-Property Relationship in a 2xxx Aluminum Alloy with addition”, Metallurgical Transaction A, Vol.19A, pp.2523-2530(1988)

[ZHE] Z. Zhen, N. Hort, O. Utke,“Investigations on Hot Tearing of mg-Al Binary Alloys by using a New Quantitative Method”, Magnesium Technology. (2009)

[CHE] R. J. Chester and I. J. Polmear, “TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys”, Micron, Vol.11, pp.311-312(1980)

[REI] L. Reich, M. Murayama and K. Hono, “Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy – A Three-Dimensional Atom Probe Study”, Acta Materialia, Vol.46, No.17, pp.6053-6062(1998)

指導教授 李勝隆 審核日期 2018-3-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明