參考文獻 |
[1] Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[2] Ronald M. Dell, Patrick T. Moseley, David A.J. Rand, Towards Sustainable Road Transport, 1st Edition, “Chapter 8 - Hydrogen, Fuel Cells and Fuel Cell Vehicles”, Academic Press, pp.288, 2014.
[3] S. Farhad, F. Hamdullahpur, “Conceptual design of a novel ammonia-fuelled portable solid oxide fuel cell system”, Journal of Power Sources, Vol. 195, pp. 3084-3090, 2010.
[4] N. Maffei, L. Pelletier, A. McFarlan, “A high performance direct ammonia fuel cell using a mixing ionic and electronic conducting anode”, Journal of Power Sources, Vol. 175, pp. 221-225, 2008.
[5] R. Yokochi, M. Hashinokuchi, T. Doi, M. Inaba, “Effects of nitride formation on anode catalytic activity in ammonia-fueled SOFCs”, ECS Transactions, Vol. 68, pp. 2745-2750, 2015.
[6] M. Hashinokuchi, R. Yokochi, W. Akimoto, T. Doi, M. Inaba, J. Kugai, “Mechanism and activity of Ni-based (Ni-M: M = Fe, Mo, W, Ta) cermet anodes for ammonia oxidation in SOFCs”, ECS Transactions, Vol. 68, pp. 2739-2744, 2015.
[7] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Catalytic influence of oxide component in Ni-Based cermet anodes for ammonia-fueled Solid Oxide Fuel Cells”, Fuel Cells, Vol. 15, pp. 390-397, 2015.
[8] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells”, Journal of Power Sources, Vol. 305, pp.72-79, 2016.
[9] L. Liu, K. Sun, X. Wu, X. Li, M. Zhang, N. Zhang, X. Zhou, “Improved performance of ammonia-fueled solid oxide fuel cell with SSZ thin film electrolyte and Ni-SSZ anode functional layer”, International Journal of Hydrogen Energy, Vol. 37, pp. 10857-10865, 2012.
[10] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, T. Inagaki, “Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells”, Solid State Ionics, Vol. 256, pp. 1-4, 2014.
[11] J. Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3−δ anode for direct ammonia-fueled Solid Oxide Fuel Cells”, ACS Applied Materials Interfaces, Vol. 7, pp. 7406–7412, 2015.
[12] J. Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “A stability study of Ni/Yttria-Stabilized Zirconia anode for direct ammonia Solid Oxide Fuel Cells”, ACS Applied Materials Interfaces, Vol. 7, pp. 28701–28707, 2015.
[13] Q. Ma, R. Peng, L. Tian, G. Meng, “Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells”, Electrochemistry Communications, Vol. 8, pp. 1791-1795, 2006.
[14] G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu, “Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen”, Journal of Power Sources, Vol. 173, pp. 189-193, 2007.
[15] Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, G. Meng, “A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte”, Journal of Power Sources, Vol. 164, pp. 86-89, 2007.
[16] Q. Ma, R. Peng, Y. Lin, J. Gao, G. Meng, “A high-performance ammonia-fueled solid oxide fuel cell”, Journal of Power Sources, Vol. 161, pp. 95-98, 2006.
[17] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Electrochemical and catalytic behaviors of Ni–YSZ Anode for the Direct Utilization of Ammonia Fuel in Solid Oxide Fuel Cells”, Journal of The Electrochemical Society, Vol. 162, pp. 1268-1274, 2015.
[18] A. Fuertea, R.X. Valenzuelaa, M.J. Escuderoa, L. Daza, “Ammonia as efficient fuel for SOFC”, Journal of Power Sources, Vol. 192, pp. 170–174, 2009.
[19] A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs”, ECS Transactions, Vol. 68(1), pp. 2751-2762, 2015.
[20] N. Dekker, B. Rietveld, “Highly efficient conversion of ammonia in electricity by Solid Oxide Fuel Cells”, 6th European Solid Oxide Fuel Cell Forum, pp. 1524, 2004.
[21] J. D. Liang, L. H. Hong, P. C. Wu, S. S. Shy, “A simple pressurized SOFC test rig for measurements of cell performance, impedance and various overvoltages”, ECS Transactions, Vol. 68(1), pp. 2179-2188, 2015.
[22] 謝易達,加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析,碩士論文,國立中央大學,2013。
[23] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,2013
[24] 李雪茹,加壓SOFC陰極半電池實驗研究,碩士論文,國立中央大學,2013
[25] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗頻譜實驗研究,碩士論文,國立中央大學,2014。
[26] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,2015。
[27] 洪立翰,合成氣於加壓型SOFC之性能量測及其微氣渦輪機複合系統之模擬分析,碩士論文,國立中央大學,2015。
[28] S. S. Shy, Y. D. Hsieh, C. M. Huang, Y. H. Chan, “Comparison of Electrochemical Impedance Measurements between Pressurized Anode-Supported and Electrolyte-Supported Planar Solid Oxide Fuel Cells”, Journal of The Electrochemical Society, Vol. 162(1), F172-F177, 2015.
[29] Y. D. Hsieh, Y. H. Chan, S. S. Shy, “Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar Solid Oxide Fuel Cells”, Journal of Power Sources, Vol. 299, pp. 1-10, 2015.
[30] P. C. Wu, H. S. Jheng, S. S. Shy, “Electrochemical Impedance Measurement and Analysis of Anodic Concentration Polarization for Pressurized Solid Oxide Fuel Cells”, Journal of The Electrochemical Society, Vol. 161(4), F513-F517, 2014.
[31] S. S. Shy, Y. D. Hsieh, J. D. Liang, “The impact of Pressurization on Anode-Supported and Electrolyte-Supported Planar Solid Oxide Fuel Cells at 750℃~850℃”, ECS Transactions, Vol. 68(1), pp. 2169-2178, 2015.
[32] B. C. H. Steele, A. Heinzel, “Materials for fuel-cell technologies”, Nature, Vol. 414, pp. 345–352, 2001.
[33] M. S. Khan, S. B. Lee, R. H. Song, J. W. Lee, T. H. Lim, S. J. Park, “Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia(Ni-YSZ) anode during solid oxide fuel cells operation:A review”, Ceramics International, Vol. 42, pp. 35-48, 2016.
[34] B. W. Chung, C. N. Chervin, J. J. Haslam, Ai-Quoc Pham, R. S. Glass, “Development and characterization of a high performance thin-film planar SOFC stack”, Journal of Electrochemical Society, Vol. 152(2), A265-A269, 2005.
[35] R.O’hayre, Suk-Won Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamental, 2nd Edition, John Wiley & Sons, Inc., USA, 2009.
[36] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons. Ltd., England, 2003.
[37] B. de Boer, M. Gonzalez, H. J. M. Bouwmeester and H. Verweij, “The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes”, Solid State Ionics, Vol. 127, pp. 269-276, 2000.
[38] M. Mogensen, K. V. Jensen, M. J. Jørgensen and S. Primdahl, “Progress in understanding SOFC electrodes”, Solid State Ionics,Vol. 150, pp. 123-129, 2002.
[39] M. Mogensen, K.V. Jensen, M. J. Jørgensen, S. Primdahl, Progress in understanding SOFC electrodes, Solid State Ionics, Vol. 150, pp. 123-129, 2003.
[40] R. O’Hayre, D. M. Barnett, F. B. Prinz, “The triple phase boundary-A mathematical model and experimental investigations for fuel cells”, Journal of The Electrochemical Society, Vol. 152 (2), pp. A439-A444, 2005.
[41] G. A. O. Villalba, “Design & development of planar Solid Oxide Fuel Cell stack”, Ph.D. Thesis, pp.19-21, 2013.
[42] Larminie, L. & Dicks, A. Fuel cell systems explained, 2nd Edition, John Wiely & Sons. Ltd., England, 2003.
[43] S. Yang, T. Chen, Y. Wang, Z. Peng, W. G. Wang, “Electrochemical analysis of an anode-supported SOFC”, International Journal of Electrochemical Science, Vol. 8, pp. 2330-2344, 2013.
[44] D. A. Noren, M. A. Hoffman, “Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models”, Journal of Power Source, Vol. 152, pp. 175-181, 2005.
[45] S. H. Chan, Z. T. Xia, “Anode micro model of Solid Oxide Fuel Cell”, Journal of Electrochemical Society, Vol. 148, pp. A388-A394, 2001.
[46] M. Ni, M.K.H. Leung, D.Y.C. Leung, “Parametric study of solid oxide fuel cell performance”, Energy Conversion and Management, Vol. 48, pp. 1525-1535, 2007.
[47] S. H. Chan, X. J. Chen, K. A. Khor, “Cathode Micromodel of Solid Oxide Fuel Cell”, Journal of Electrochemical Society, Vol. 151, pp. A164-A172, 2004.
[48] J. H. Nam, D. H. Jeon, “A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells”, Electrochimica Acta, Vol. 51, pp. 3446-3460, 2006.
[49] R. Kikuchi, T. Yano, T. Takeguchi, K. Eguchi, Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions, Solid State Ionics, Vol. 174, pp. 111-117, 2004.
[50] W. G. Bessler, S. Gewies, “Gas concentration impedance of solid oxide fuel cell anodes II. Channel geometry”, Journal of The Electrochemical Society, Vol. 154, pp. B548-B559, 2007.
[51] C. X. Li, Z. Z. Wang, S. Liu, C. J. Li, “Effect of gas pressure on polarization of SOFC cathode prepared by plasma spray”, Journal of Thermal Spray Technology, Vol. 22(5), pp. 640-645, 2013.
[52] J. B. Jorcin, M. E. Orazem, N. Pébére, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy, Electrochemica Acta, Vol. 51, pp. 1473-1479, 2006.
[53] A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, Journal of The Electrochemical Society, Vol. 155, pp. B36-B41, 2008.
[54] S.C.Singhal, K.Kendal, High temperature Solid Oxide Fuels: Fundamentals design and applications, pp.197, Elsevier, Kidlington, UK (2003).
[55] A. Thaker, M. Mathew, N. Hasib, N. Herringer, “A review of ammonia fuel cells”, CHE598 Topic: Fuel Cells & Biofuel Cells, pp. 1-6, 2013.
[56] 張軒維,加壓型固態氧化物燃料電池性能與阻抗之定量量測與分析,碩士論文,國立中央大學,2011.
[57] V. A. C. Haanappel, M. J. Smith, “A review of standardising SOFC measurement and quality assurance at FZJ”, Journal of Power Sources, Vol. 171, pp. 169-178, 2007.
[58] J. Milewski, A. Miller, “Influences of the type and thickness of electrolyte on Solid Oxide Fuel Cell Hybrid System performance”, Journal of Fuel Cell Science and Technology, Vol. 3(4), pp. 396-402, 2006.
[59] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, “Influence of pressurisation on SOFC performance and durability : A theoretical study”, Fuel cell, Vol. 11, pp. 581-591, 2011.
[60] Nielsen, J., Mogensen, M., SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ionics, Vol. 189, pp. 74-81, 2011.
[61] Liu, B., Muroyama, H., Matsui, T., Tomida, K., Kabata, T., Eguchi, K., Analysis of impedance spectra for segmented-in-series tubular solid oxide fuel cells, J. Electrochem. Soc., Vol. 157, pp. B1858-1864, 2010.
[62] Liu, B., Muroyama, H., Matsui, T., Tomida, K., Kabata, T., Eguchi, K., Gas transport impedance in segmented-in-series tubular solid oxide fuel cell, J. Electrochem. Soc., Vol. 158, pp. B215-224, 2011.
[63] Primdahl, S., Mogensen, M., Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc., Vol. 145, pp. 2431-2438, 1998. |