博碩士論文 103323073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.222.56.71
姓名 劉鎔維(Jung-Wei Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 模糊系統H∞靜態輸出回授控制器設計─齊次多項式尤拉法
(H∞ Static Output Feedback Controller Design of Fuzzy Systems Via Homogeneous Euler′s Method)
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ 廣義模糊控制-離散系統 線性分式轉換法★ H∞模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制—離散系統 線性分式轉換法★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理
★ 強健模糊觀測狀態回饋控制-Circle與Popov定理★ H_infinity 取樣模糊系統的觀測型控制
★ H∞取樣模糊系統控制與觀測定理★ H-ihfinity取樣模糊系統動態輸出回饋控制
★ H∞模糊系統控制-多凸面法★ H∞模糊系統控制-寬鬆變數法
★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測★ 寬鬆耗散性模糊控制-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究連續模糊系統之靜態輸出回授控制器設計,使用
非二次李亞普諾夫函數(non-quadratic Lyapunov function) 及其對時間的變化率做為穩定的條件, 並滿足H1 性能指標。本論文分為兩個步驟設計靜態輸出回授控制器,步驟一: 求得狀態回授增益,使用二
次李亞普諾夫函數(quadratic Lyapunov function) ,步驟二: 求解靜態輸出回授增益, 使用非二次李亞普諾夫函數(non-quadratic Lyapunov function),其中以尤拉齊次多項式定理建立非二次李亞普諾夫函數(non-quadratic Lyapunov function),其形式為
V (x) = x′P(x)x = 1/(g(g-1))x′∇xxV (x)x。
電腦模擬方面以平方和方法(Sum-of-Squares) 來檢驗模糊系統的
穩定條件,並設計出狀態回授控制器以及靜態輸出回授控制器。
摘要(英) The main contribution in this thesis is static output feedback controller
design of H1 continuous fuzzy system. And we can solve the inequalities derived from non-quadratic Lyapunov function and its time gradient. It’s a two-step procedure for solving output feedback control gain, step 1: solve for state feedback gain (for common P theorem), step 2: solve for static output feedback gain (for homogeneous polynomial P(x) theorem). A non-quadratic Lyapunov function derived from
Euler’s homogeneous polynomial theorem has following form
V (x) = x′P(x)x = 1/(g(g-1))x′∇xxV (x)x。
In numerical simulation, we solve for state feedback gain first and then solve for static output feedback gain with sum-of-squares approach.
關鍵字(中) ★ 非二次穩定
★ 平方和
★ Takagi-Sugeno模糊系統
★ 尤拉齊次多項式定理
★ H∞狀態回授控制
★ H∞靜態輸出回授控制
關鍵字(英) ★ non-quadratic stability
★ sum of squares
★ T-S fuzzy systems
★ Euler′s Theorem for Homogeneous Function
★ H∞ state feedback control
★ H∞ static output feedback control
論文目次 中文摘要............................................................................................. i
英文摘要............................................................................................. ii
謝誌.................................................................................................... iii
目錄.................................................................................................... iv
圖目錄................................................................................................ vi
1、背景介紹......................................................................... 1
1.1 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文結構. . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 符號標記. . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 預備定理. . . . . . . . . . . . . . . . . . . . . . . . 5
2、系統架構與檢測條件...................................................... 7
2.1 模糊系統架構簡介. . . . . . . . . . . . . . . . . . . 7
2.2 尤拉齊次多項式定理. . . . . . . . . . . . . . . . . 8
2.3 H1 狀態/靜態輸出迴授控制系統. . . . . . . . . . . 12
2.4 主要定理. . . . . . . . . . . . . . . . . . . . . . . . 17
3、模糊建模方法及平方和檢測法........................................ 24
3.1 泰勒級數模糊. . . . . . . . . . . . . . . . . . . . . 24
3.2 平方和檢驗法. . . . . . . . . . . . . . . . . . . . . 26
3.3 平方和檢驗法之定理2.1 穩定度條件. . . . . . . . . 30
3.4 平方和檢驗法之定理2.2 穩定度條件. . . . . . . . . 31
4、電腦模擬......................................................................... 34
4.1 例題一. . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 例題二. . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 例題三. . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 例題四. . . . . . . . . . . . . . . . . . . . . . . . . 53
5、結論與未來方向.............................................................. 59
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . 61
文獻.................................................................................................... 62
參考文獻 [1] K. Tanaka, H. Yoshida, H.Ohtake and H.O.Wang, “A sum-ofsquares
approach to modeling and control nonlinear dynamical systems
with polynomial fuzzy systems ,” IEEE Transactions on fuzzy
systems vol. 17, pp.911–922, August. 2009.
[2] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modelling and control,” IEEE Trans. Syst., Man,
Cybern., vol. 15, no. 1, pp. 116–132, Jan. 1985.
[3] M. Sugeno and G. Kang, “Structure identification of fuzzy model,”
Fuzzy Set and Systems, vol. 28, pp. 15–33, 1988.
[4] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy
control systems,” Fuzzy Set and Systems, vol. 45, pp. 135–156, 1992.
[5] W. Haddad and D. Bernstein, “Explicit construction of quadratic
Lyapunov functions for the small gain, positive, circle and Popov
theorems and their application to robust stability. Part II: discretetime
theory,” Int’l J. of Robust and Nonlinear Control, vol. 4, pp.
249–265, 1994.
[6] S. Prajna, A. Papachristodoulou, and P. Parrilo, “Introducing SOSTOOLS:
a general purpose sum of squares programming solver,” in
Proc of IEEE CDC, Montreal, Ca, Jul. 2002, pp. 741–746.
[7] S. Prajna, A. Papachristodoulou, and et al, “New developments on
sum of squares optimization and SOSTOOLS,” in Proc. the 2004
American Control Conference, 2004, pp. 5606–5611.
[8] Sala, Antonio, and C. Ario. ”Polynomial fuzzy models for nonlinear
control: a Taylor series approach.” Fuzzy Systems, IEEE Transactions
on 17.6 (2009): 1284-1295.
[9] H. Ichihara and E. Nobuyama, “A computational approach to state
feedback synthesis for nonlinear systems based on matrix sum of
squares relaxations,” Proc. 17th Int’l Symposium on Mathematical
Theory of Network and Systems pp. 932–937, Kyoto, Japan, 2006.
[10] H. Ichihara, “Observer design for polynomial systems using convex
optimization,” in Proc. of the 46th IEEE CDC, New Orleans, LA,
Dec. 2007, pp. 5347–5352.
[11] X. Liu and Q. Zhang, “New approaches to H1 controller designs
based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica,
vol. 39, pp. 1571–1582, 2003.
[12] H. Ichihara and E. Nobuyama, “A computational approach to state
feedback synthesis for nonlinear systems based on matrix sum of
squares relaxations,” in Proc. 17th Int’l Symposium on Mathematical
Theory of Network and Systems, Kyoto, Japan, 2006, pp. 932–
937.
[13] S. Prajna, A. Papachristodoulou and F. Wu, “Nonlinear control
synthesis by sum of squares optimization: A Lyapunov-based Approach,”
in Proc. 5th Asian Control Conference, 2004, pp. 157–165.
[14] J.Renz and F.Allgower, “Polynomial Feedback and Observer Design
using Nonquadratic Lyapunov Functions ,” 44th IEEE Coference
on Decision and Control, and the European Control Conference
2005 pp.7587–7592, December. 2005.
[15] K.C. Border, “Euler’s Theorem for Homogeneous Functions ,” October.
2000.
[16] Cristiano M. Agulhari, Ricardo C. L. F. Oliveira and Pedro L. D.
Peres, “Static output feedback control of polytopic systems using
polynomial Lyapunov functions,” IEEE Conference on Decision and
Control Network and Systems, pp. 6894–6901, December. 2010.
[17] Dan Zhao and Jian-Liang Wang, “Robust static output feedback
design for polynomial nonlinear systems,” Int’l J. of Robust and
Nonlinear Control, vol. 20, pp. 1637–1654, November. 2009.
[18] Yong-Yan Cao, James Lamà and You-Xiam Sun, “Static Output
Feedback Stabilization: An ILMI Approach,” Automatica, vol. 34,
pp. 1641–1645, 1998.
[19] Ji-Chang Lo and Min-Long Lin, “Robust H infinity Nonlinear Control
via Fuzzy Static Output Feedback,” IEEE Trans on circuits
and systems, vol. 50, no. 11, pp. 1494–1502, November. 2003.
[20] Shih-Wei Kau, Hung-Jen Lee, Ching-Mao Yang, Ching-Hsiang Lee,
Lin Hong, Chun-Hsiung Fang, “Robust H infinity fuzzy static output
feedback control of T-S fuzzy systems with parametric uncertainties,”
Fuzzy Set and Systems, vol. 158, pp. 135–146, 2006.
[21] Bor-Sen Chen, Senior Member, “Mixed H2/H infinity Fuzzy Output
Feedback Control Design for Nonlinear Dynamic Systems: An LMI
Approach,” IEEE Trans on fuzzy systems, vol. 8, no. 3, pp. 249–265,
June. 2000.
[22] Kazuo Tanaka, Hiroshi Ohtake, Toshiaki Seo, Motoyasu Tanaka,
Hua O Wang, “Polynomial fuzzy observer design: A sum-of-squares
approach.,” System, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 42(5):1330-1342, 2012.
[23] HUANG Wen-Chao, SUN Hong-Fei, ZENG Jian-Ping, “Robust
Control Synthesis of Polynomial Nonlinear Systems Using Sum of
Squares Technique,” Acta Automatica Sinica, vol. 39, no. 6, pp.
799–804, June. 2013.
[24] Antonio Sala, “Polynomial Fuzzy Models for Nonlinear Control: A
Taylor Series Approach,” IEEE Trans on fuzzy systems, vol. 17,
no. 6, pp. 1284–1295, June. 2009.
[25] J.R. Wan and J.C. Lo, “LMI relaxations for nonlinear fuzzy control
systems via homogeneous polynomials,” The 2008 IEEE World
Congress on Computational Intelligence,FUZZ2008, pp. 134—140,
Hong Kong, June. 2008.
[26] V.F. Montagner and R.C.L.F Oliveira and P.L.D., “Necessary and
sufficient LMI conditions to compute quadratically stabilizing state
feedback controller for Takagi-sugeno systems,” Proc. of the 2007
American Control Conference, pp. 4059–4064, July. 2007.
[27] T. M. Guerra and L. Vermeiren, “LMI-based relaxed nonquadratic
stabilization conditions for nonlinear systems in the Takagi-
Sugeno’s form,” Automatica., vol. 40, pp. 823–829, 2004.
[28] B.C. Ding and H. Sun and P Yang, “Further studies on LMI-based
relaxed stabilization conditions for nonlinear systems in Takagisugeno’s
form ,” Automatica vol. 43, pp. 503–508, August. 2006.
[29] X. Chang and G. Yang, “FA descriptor representation approach to
observer-based H∞ control synthesis for discrete-time fuzzy systems,”
Fuzzy Set and Systems vol. 185, no. 1, pp.38–51, 2010.
[30] B. Ding, “Homogeneous Polynomially Nonquadratic Stabilization of
Discrete-Time Takagi–Sugeno Systems via Nonparallel Distributed
Compensation Law,” IEEE Transactions on fuzzy systems vol. 18,
no. 5, pp. 994–1000, August. 2010.
[31] J. Pan, S. Fei, A. Jaadari and T. M. Guerra, “Nonquadratic stabilization
of continuous T-S fuzzy models: LMI solution for local
approach ,” IEEE Transactions on fuzzy systems vol. 20, no. 3, pp.
594–602, 2012.
[32] D. H. Lee, J. B. Park and Y. H. Joo, “Approaches to extended
non-quadratic stability and stabilization conditions for discrete-time
Takagi-Sugeno fuzzy systems ,” Automatica vol. 47,no. 3, pp.534–
538, 2011.
[33] M. Johansson and A. Rantzer and K.-E. Arzen, “Piecewise
quadratic stability of fuzzy systems,” IEEE Transactions on fuzzy
systems vol. 7, no. 6, pp. 713–722, December. 1999.
[34] G. Feng, “Controller synthesis of fuzzy dynamic systems based on
piecewise Lyapunov functions ,” IEEE Trans. Circuits and Syst. I:
Fundamental Theory and Applications vol. 11, no. 5, pp. 605–612,
August. 2003.
[35] G. Feng, C. Chen, D. Sun and Y. Zhu, “H1 controller synthesis
of fuzzy dynamic systems based on piecewise Lyapunov functions
and bilinear matrix inequalities,” IEEE Trans. Circuits and Syst.
I: Fundamental Theory and Applications vol. 13,no. 1, pp. 94–103,
2005.
[36] K. Tanaka and H. Yoshida and H. Ohtake and H. O. Wang, “A sum
of squares approach to modeling and control of nonlinear dynamical
systems with polynomial fuzzy systems,” IEEE Transactions on
fuzzy systems vol. 17,no. 4, pp. 911–922, August. 2009.
[37] J. Xu and K.Y. Lum and et al, “A SOS-based approach to residual
generators for discrete-time polynomial nonlinear systems ,” Proc.
of the 46th IEEE CDC,New Orleans pp.372–344, December. 2007.
[38] J. Xie, L. Xie and Y. Wang, “ Synthesis of discrete-time nonlinear
systems: A SOS approach,” Proc. of the 2007 American Control
Conference New York, pp. 4829–4834, July. 2007.
[39] K. Tanaka and H. Yoshida “Stabilization of polynomial fuzzy systems
via a sum of squares approach ,” Proc. of the 22nd Int’l Symposium
on Intelligent Control Part of IEEE Multi-conference on
Systems and Control pp. 160–165, Singapore, October, 2007.
[40] C.W.J. Hol and C.W. Scherer, “Sum of squares relaxations for polynomial
semidefinite programming,” Proc.of MTNS pp. 1–10, 2004.
[41] C. Ebenbauer and J. Renz and F. Allgower, “Polynomial Feedback
and Observer Design using Nonquadratic Lyapunov Functions,”
44th IEEE Conference on Decision and Control, and the European
Control Conference 2005 pp.7587–7592, 2005.
[42] K. Tanaka and H.O. Wang, “Fuzzy Control Systems Design and
Analysis: A Linear Matrix Inequality Approach,” pp. 69–76, New
York, NY, 2001.
[43] H.O. Wang and K. Tanaka and M.F. Griffin, “An approach to fuzzy
control of nonlinear systems: stability and design issues,” IEEE
Trans. Fuzzy Systems, vol. 4, no. 1, pp. 14–23, Feb. 1996.
[44] P.A. Parrilo, “Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization,” Caltech,
Pasadena, CA, May 2000.
指導教授 羅吉昌(Ji-Chang Lo) 審核日期 2016-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明