博碩士論文 103324041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.17.164.48
姓名 陸依彤(Yi-Tung Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用寡肽培養人類胚胎幹細胞
(Human Embryonic Stem Cell Culture Using Oligopeptides)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這份論文「利用寡肽培養人類胚胎幹細胞」中分成兩個部分,Part 1為「人類胚胎幹細胞在無異種培養的條件下使用特定的寡肽取代原本在培養液中TGF-β1或FGF-2的蛋白質」,而Part 2為「人類胚胎幹細胞在熱敏感奈米片段材料上的培養與脫附效率」。在Part 1中,現在大部分的培養液裡的生長因子含有從動物獲得的蛋白質,而這些含有從動物中獲取的成分成為多功能幹細胞(hPSCs)培養在臨床應用上的限制。在這研究裡,於避免使用生長因子TGF-β1或FGF-2的情況下,發展無異種和無滋養層的培養液,因為生長因子在室溫下較不穩定必須貯存在-20度下,需花費較多在貯存方面,所以在這裡選用TGF-β1或FGF-2的寡肽取代物,可被貯存於室溫下。如果培養液可被長久貯存於室溫或是4度的環境下,用於培養hPSCs的培養液更為方便也更為節省。於研究中,使用此培養液培養人類胚胎幹細胞(hESCs)WA09在Matrigel上,且計算細胞貼附率,增值速度以及分化率找出使用此含有TGF-β1或FGF-2的寡肽取代物培養液的最佳條件。我們找到在只有化合物和無異種的條件下,培養液中含有TGF-β1的寡肽取代物較適合用於培養hPSCs。而在Part 2裡,利用低臨界溶解溫度(LCST)的熱敏感材料製備培養皿去培養幹細胞且降低培養液溫度使得細胞脫附,可維持細胞聚集和片狀,取代使用酵素讓細胞從培養皿上脫附。在這裡設計熱敏感材料去培養人類多功能幹細胞,利用RAFT高分子合成法,三種具有和polystyrene的共聚物為(a)熱敏感性的poly(N-isopropyl acrylamide), PNIPAAm (b) 生物相容性的polyethylene glycol methacrylate (PEGMA) 和(c)可藉由polyacrylic acid (PAA)的carboxylic acid共軛寡肽(oligo-vitronectin),調配藉由降低培養液的溫度對培養hESCs最理想的表面成分。將培養皿置於銅板上且放進7-8度的冰箱中,30分鐘之內hESCs可達高脫附率50%相比於其他冷卻方式。更進一步的是,hESCs的脫附率可達到將近100%當使用roller和1至2次的pipetting。現在藉由降低溫度使部分細胞脫附,hESCs可被持續的培養在熱敏感材料上,且維持其多功能性。未來,我們正在設計從2D培養到3D培養在臨床上的應用。
摘要(英) This Master thesis, ”Human Embryonic Stem Cell Culture Using Oligopeptides” contains two studies; Part 1, Human Embryonic Stem Cells Culture in Medium Containing Specific Oligopeptides for Replacement of TGF-1 and FGF-2 under Xeno-free Culture Conditions and Part 2, Culture and Detachment of Human Embryonic Stem Cells on Biomaterials Immobilized with Thermoresponsive Nanobrush. In Part 1, most of current hPSC medium contains animal-derived proteins including growth factors. The medium containing animal-derived components generates barriers for the clinical usage of hPSCs cultured. Here, xeno-free and feeder-free culture medium was developed, which avoids to use the growth factors of TGF-β1 or FGF-2 for the culture of hPSCs. Because growth factors are extremely expensive and should be stored at -20 degree due to low stability of protein at room temperature, specific oligopeptides were selected for TGF-β1 and FGF-2 replacement on hPSC culture, which can be stored at room temperature. If the culture medium can be stored in room temperature or 4 degree for long time, it is convenient to store and use the culture medium of hPSCs and the price of the culture medium is expected to become inexpensive. In this study, WA09 (H9) human embryonic stem cells (ESCs) were cultured on Matrigels in the culture medium developed in this study and investigated cell attachment ratio, expansion rate and differentiation ratio to evaluate what conditions are the best for hPSCs culture using the culture medium containing the oligopeptide for TGF-β1 or FGF-2 replacement. It is concluded that the oligopeptides for replacement of TGF-β1 can be used for hPSC culture in the chemical-defined and xeno-free conditions. In Part 2, the surface prepared using thermoresponsive polymers with low critical solution temperature (LCST) is an attractive candidate for stem cell culture because stem cells can be detached from the thermoresponsive surface without applying an enzymatic digestion method and, instead, by decreasing the temperature of culture medium, which enables cell aggregates or cell sheets to be obtained in culture medium. In this study, the thermoresponsive nano-brush surfaces were designed for the culture of human pluripotent stem cells (hPSCs). Using RAFT polymerization, three coating copolymers having polystyrene were prepared, which were polystyrene copolymers with (a) thermoresponsive poly(N-isopropyl acrylamide), PNIPAAm, (b) biocompatible polyethylene glycol methacrylate (PEGMA), and (c) polyacrylic acid (PAA) where bioactive oligopeptide (oligo-vitronectin) could be conjugated via carboxylic acid of PAA. The optimal surface composition for human embryonic stem cells (hESCs, WA09) detached by decreasing temperature of the culture medium was investigated. hESCs were successfully cultured on the thermoresponsive surface, the most rapid detachment conditions of hESCs was to keep dishes cool using the copper plate below the culture dishes in the refrigerator (7-8 degree) where higher detachment ratio (50%) of hESCs was achieved within 30 minutes compared to other conditions. Moreover, hESCs could be detached nearly 100% combined with roller and 1-2 times pipetting. Currently, hESCs are culturing continuously on the thermoresponsive surface by the partial detachment process where hESCs can maintain their pluripotency on the thermoresponsive surface coated with these copolymers and can easily detach from the thermoresponsive surface by decreasing the temperature. In future, we are designing to shift to a novel 3D culture system to scale up for clinical application.
關鍵字(中) ★ 人類胚胎幹細胞
★ 熱敏感材料
★ 細胞培養
關鍵字(英) ★ Human Embryonic Stem Cells
★ Thermoresponsive nanobrush
★ Cell Culture
論文目次 1-1 Stem Cells Therapy for Regenerative Medicine 1
1-1-1 Self- Renewal and Lineage Plasticity of Stem Cells Lineage 3
1-1-2 Pluripotent Stem Cells 5
1-1-3 Adult Stem Cells 8
1-2 Microenvironment Effect on Human Pluripotent Stem Cells 9
1-2-1 Environmental Factors 10
1-2-2 Chemically Defined Materials for Pluripotent Stem Cell culture 14
1-2-3 Temperature-responsive cell culture surface 20
1-2-4 Chemically Defined Medium for Human PSCs Culture 30
1-3 Three-dimensional (3D) Culture of hPSCs on Biomaterials 32
1-4 Characterization of pluripotent stem cells 38
1-4-1 Colony formation 39
1-4-2 Alkali phosphatase activity 39
1-4-3 Pluripotent gene expression 40
1-4-4 Pluripotent protein expression 40
1-4-5 Differentiation ability 40
Chapter 2. Materials and Methods 43
2-1 Materials 43
2-1-1 Cells and Culture Media 43
2-1-2 Chemicals 43
2-2 Methods 46
2-2-1 Preparation of hESCs Culture Medium Containing Specific Oligopeptides for Replacement of TGF-1 and FGF-2 46
2-2-2 Preparation of the Thermoresponsive Nanobrush Surfaces 47
2-2-3 Cell Culture on Matrigel in NCU-8 51
2-2-3 Cell Culture on Thermoresponsive Nanobrush 51
2-2-4 Cell Adhesion and Detachment 52
2-2-5 Cooling Processes for Detachment 53
2-2-6 Differentiation Ratio of hESC Colonies 53
2-2-7 Live and Dead Assay 54
2-2-8 Immunofluorescence 54
2-2-9 Embryoid Body Formation 56
2-2-10 10x Phosphate Buffer Saline (PBS) Preparation 57
2-2-11 Storage of Human Pluripotent Stem Cells 58
2-2-12 Thawing frozen stock of human pluripotent stem cell 58
Chapter 3. Results and Discussion 60
3-1 Cultivation of hESCs on Matrigel in NCU-8 medium 60
3-1-1 hESCs Culture on Feeder-free System in the Medium Containing TGF-β1 or FGF-2 60
3-1-2 hESCs Culture on Feeder-free System in the Medium Containing Oligopeptides 62
3-2 hESCs Attachment and Detachment Behavior on Thermoresopnsive Nanobrush-coated Surfaces 74
3-2-1 Culture and Detachment of hESCs on Thermoresonsive nanobrush-coated Dishes without Using Rolling Cutter 75
3-2-2 Detachment of hESCs on Thermoresonsive Nanobrush-coated Surface by Using Rolling Cutter 84
3-2-2 Attachment and Detachment of hESCs on Thermoresonsive Nanobrush-coated Dishes in different cooling processes by using Rolling Cutter 89
3-3 Continuous Harvest of hESCs via Partial Detachment from Thermoresponsive Nanobrush-coated Surfaces 95
3-4 Characterization of hESCs on Thermoresponsive Surface 103
3-4-1 Characterization of hESCs-Immunochemistry Analysis 103
Chapter 4. Conclusion 106
Supplemental Data 108
Reference 118
參考文獻 [1] Serra, M., et al., Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 2012. 30(6): p. 350-359.
[2] Andrews, P.W., et al., Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans, 2005. 33(Pt 6): p. 1526-30.
[3] Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
[4] Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
[5] Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
[6] Beth, S. et al., Therapies of the state. Nature Biotechnology, 2014. 32(2984): p. 736–41.
[7] Diehn, M., R.W. Cho, and M.F. Clarke, Therapeutic implications of the cancer stem cell hypothesis. Semin Radiat Oncol, 2009. 19(2): p. 78-86.
[8] Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
[9] Strulovici, Y., et al., Human embryonic stem cells and gene therapy. Molecular Therapy, 2007. 15(5): p. 850-866.
[10] Angelika E. Schnieke, Alexander J. Kind, William A. Ritchie, Karen Mycock, Angela R. Scott, Marjorie Ritchie, Ian Wilmut, Alan Colman, Keith H. S. Campbell, Human Factor IX Transgenic Sheep Produced by Transfer of Nuclei from Transfected Fetal Fibroblasts. Science, 1997. 5346: 2130-2133
[11] Chad A. Cowan, Jocelyn Atienza, Douglas A. Melton, Kevin Eggan, Nuclear Reprogramming of Somatic Cells After Fusion with Human Embryonic Stem Cells. Science, 2005. 5739: pp. 1369-1373.
[12] Masako Tadaa, Yousuke Takahamaa, Kuniya Abe, Norio Nakatsuji, Takashi Tada, Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology, 2001. 11: pp. 1553–1558.
[13] Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008. 26(1): p. 101-106.
[14] Daisy A. Robinton, George Q. Daley, The promise of induced pluripotent stem cells in research and therapy. Nature, 2012. 481: pp. 295–305.
[15] Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
[16] Yu, J., et al., Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science, 2009. 324(5928): p. 797-801.
[17] Genetic Science Learning Center (2014, June 22) Stem Cell Quick Reference. Learn.Genetics. Retrieved April 28, 2016, from http://learn.genetics.utah.edu/content/stemcells/quickref/
[18] Lin, C.S., et al., Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol, 2010. 25(6): p. 807-15.
[19] Michel, Gurvan, Thierry Tonon, Delphine Scornet, J. Mark Cock, Bernard Kloareg , The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 2010. 188(1): 82–97.
[20] Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature biotechnology, 2010. 28(6): p. 611-5.
[21] Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of biotechnology, 2010. 146(3): p. 143-6.
[22] Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
[23] Azarin, S.M. and S.P. Palecek, Development of scalable culture systems for human embryonic stem cells. Biochemical Engineering Journal, 2010. 48(3): p. 378-384.
[24] Serra, M. et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J. Biotechnol, 2010. 148: p 208–215
[25] Ferreira, L.S., et al., Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007. 28(17): p. 2706-17.
[26] Maia, J., et al., Controlling the Neuronal Differentiation of Stem Cells by the Intracellular Delivery of Retinoic Acid-Loaded Nanoparticles. Acs Nano, 2011. 5(1): p. 97-106.
[27] Ao, A., J.J. Hao, and C.C. Hong, Regenerative Chemical Biology: Current Challenges and Future Potential. Chemistry & Biology, 2011. 18(4): p. 413-424.
[28] Burdick, J.A. and F.M. Watt, High-throughput stem-cell niches. Nature Methods, 2011. 8(11): p. 915-916.
[29] F. van Roya and G. Berx, The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci., 2008. 65(23): p. 3756 – 3788.
[30] What are adult stem cells?. In Stem Cell Information. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2015. http://stemcells.nih.gov/info/basics/pages/basics4.aspx
[31] Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89.
[32] Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
[33] A. Higuchi, S.-H. Kao, Q.-D. Ling, Y.-M. Chen, H.-F. Li, A. A. Alarfaj, M. A. Munusamy, K. Murugan, S.-C. Chang, H.-C. Lee, S.-T. Hsu, S. S. Kumar, A. Umezawa, Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci. Rep.,2015. 5, 18136.
[34] Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
[35] Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell cul-ture proteins as extracellular matrices for stem cell differentiation.Chem Rev, 2012. 112: p. 4507–40.
[36] Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
[37] Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of biotechnology, 2010. 146(3): p. 143-6.
[38] Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-U72.
[39] Meng, G., S. Liu, and D.E. Rancourt, Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev, 2012. 21(11): p. 2036-48.
[40] Nishishita, N., et al., Generation of Virus-Free Induced Pluripotent Stem Cell Clones on a Synthetic Matrix via a Single Cell Subcloning in the Naive State. Plos One, 2012. 7(6).
[41] McCormick, C.L., et al., RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter, 2008. 4(9): p. 1760-1773.
[42] Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature protocols, 2011. 6(7): p. 1037-43.
[43] Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
[44] Harb, N., T.K. Archer, and N. Sato, The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells. Plos One, 2008. 3(8).
[45] Carlson, A.L., et al., Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments. Faseb Journal, 2012. 26(8): p. 3240-3251.
[46] Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. Bmc Developmental Biology, 2010. 10.
[47] Stephenson, E., et al., Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nature protocols, 2012. 7(7): p. 1366-81.
[48] Lu, H.F., et al., A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials, 2012. 33(8): p. 2419-2430.
[49] Peng IC, Yeh CC, Lu YT, Chang Y, Higuchi A, et al., Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces, Biomaterials, 76 (2016) 76-86.
[50] Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-44.
[51] Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature protocols, 2011. 6(7): p. 1037-43.
[52] Irwin, E.E., et al., Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 2011. 32(29): p. 6912-6919.
[53] Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
[54] Zhang, R., et al., A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Communications, 2013. 4.
[55] Guokai Chen, Daniel R Gulbranson, Zhonggang Hou, Jennifer M Bolin, Victor Ruotti, Mitchell D Probasco, Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 2011. 8: p424–429
[56] Higuchi, A., et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules, 2004. 5(5): p. 1770-4.
[57] Higuchi, A., et al., Temperature-dependent cell detachment on Pluronic gels. Biomacromolecules, 2005. 6(2): p. 691-6.
[58] Tamura, A., et al., Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials, 2012. 33(15): p. 3803-12.
[59] Saito, T., et al., Reversal of Diabetes by the Creation of Neo-Islet Tissues Into a Subcutaneous Site Using Islet Cell Sheets. Transplantation, 2011. 92(11): p. 1231-1236.
[60] Wei, H., et al., Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009. 34(9): p. 893-910.
[61] Yamada, N., et al., Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications, 1990. 11(11): p. 571-576.
[62] Okano, T., et al., A NOVEL RECOVERY-SYSTEM FOR CULTURED-CELLS USING PLASMA-TREATED POLYSTYRENE DISHES GRAFTED WITH POLY(N-ISOPROPYLACRYLAMIDE). Journal of Biomedical Materials Research, 1993. 27(10): p. 1243-1251.
[63] Nakajima, K., et al., Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials, 2001. 22(11): p. 1213-1223.
[64] Nobuo Kanai and Masayuki Yamato and Teruo Okano, Cell sheets engineering for esophageal regenerative medicine. Annals of Translational Medicine, 2014. 2(3): 28
[65] Akiyama Y, Kikuchi A, Yamato M et al. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 2004. 20: p. 5506–11.
[66] Fukumori K, Akiyama Y, Yamato M et al. Temperature-responsive glass overslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomater 2009;5:470–6.
[67] Tang, Z., Y. Akiyama, and T. Okano, Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering. Polymers, 2012. 4(3): p. 1478-1498.
[68] Kikuchi, A. and T. Okano, Nanostructured designs of biomedical materials: Applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release, 2005. 101(1-3): p. 69-84.
[69] Takei, Y.G., et al., DYNAMIC CONTACT-ANGLE MEASUREMENT OF TEMPERATURE-RESPONSIVE SURFACE-PROPERTIES FOR POLY(N-ISOPROPYLACRYLAMIDE) GRAFTED SURFACES. Macromolecules, 1994. 27(21): p. 6163-6166.
[70] Yakushiji, T., et al., Graft Architectural Effects on Thermoresponsive Wettability Changes of Poly(N-isopropylacrylamide)-Modified Surfaces. Langmuir, 1998. 14(16): p. 4657-4662.
[71] Yamato, M., et al., Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Progress in Polymer Science, 2007. 32(8–9): p. 1123-1133.
[72] Aoyagi T, Ebara M, Sakai K et al. Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Ed, 2000. 11: p101–10.
[73] Yamada KM. Adhesive recognition sequences. J Biol. Chem., 1991. 266:1 p2809–12.
[74] Ebara M, Yamato M, Aoyagi T et al. Temperature-responsive cell culture surfaces enable “on–off” affinity control between cell integrins and RGDS ligands. Biomacromolecules, 2004. 5: p505–10.
[75] Arisaka Y, Kobayashi J, Yamato M et al. Switching of cell growth/ detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Biomaterials,2013. 34: 4214–22.
[76] Tang Z, Okano T. Recent development of temperature-responsive surfaces and their application for cell sheet engineering. Regenerative Biomaterials, 2014.1(1): p91-102.
[77] Guillame-Gentil O, Semenov O, Roca A et al. Engineering the extracellular environment: strategies for building 2D and 3D cellular structures. Adv Mater, 2010. 22: p5443–62.
[78] Kaji H, Camci-Unal G, Langer R et al. Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochim Biophys Acta, 2011. 1810: p239–50.
[79] Zorlutuna P, Annabi N, Camci-Unal G et al. Microfabricated biomaterials for engineering 3D tissues. Adv Mater, 2012. 24: p1782–804.
[80] Takahashi H, Nakayama M, Itoga K et al. Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures. Biomacromolecules, 2011. 12: p1414–8.
[81] Kwon OH, Kikuchi A, Yamato M et al. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J Biomed Mater Res, 2000. 50: p82–9.
[82] Kwon OH, Kikuchi A, Yamato M et al. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials, 2003. 24: P1223–32
[83] Yoshida R, Uchida K, Kaneko Y et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature, 1994. 374: p240–2.
[84] Kaneko Y, Sakai K, Kikuchi A et al. Fast swelling/deswelling kinetics of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromol Symp, 1996. 109: p41–53.
[85] Temperature-responsive surfaces and cell sheet engineering 101 Downloaded fromhttp://rb.oxfordjournals.org/ by guest on May 1, 2016
[86] Tang Z, Akiyama Y, Yamato M et al. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials, 2010. 31: p7435–43
[87] Veraitch, F.S., et al., The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnology and Bioengineering, 2008. 99(5): p. 1216-1229.
[88] Ezashi, T., P. Das, and R.M. Roberts, Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): p. 4783-4788.
[89] Okita et al., Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448 (7151): p313-U1
[90] J.Y. Yu, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318 (5858): p1917–1920
[91] Skottman, H. & Hovatta, O., Culture conditions for human embryonic stem
cells. Reproduction,2006. 132: p691–698.
[92] Akopian, V. et al., Comparison of defied culture systems for feeder cell
free propagation of human embryonic stem cells. In Vitro Cell Dev. Biol.
Anim.,2010. 46: p247–258.
[93] Garcia-Gonzalo, F.R. & Izpisua Belmonte, J.C., Albumin-associated lipids
regulate human embryonic stem cell self-renewal. PLoS ONE,2008. 3: e1384.
[94] https://www.thermofisher.com/order/catalog/product/A1517001, Life technologies,
[95] Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O′Sullivan C, et al., Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells. 2005. 23: p315–323.
[96] Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, et al., Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells, 2006. 24: p568–574.
[97] Dvorak P, Hampl A. Basic fibroblast growth factor and its receptors in human embryonic stem cells. Folia Histochem Cytobiol, 2005. 43: p203–208.
[98] Avery S, Inniss K, Moore H. The regulation of self-renewal in human embryonic stem cells. Stem Cells. Dev., 2006. 15: p729–740.
[99] Motomura K, Hagiwara A, Komi-Kuramochi A, Hanyu Y, Honda E, Suzuki M, et al. An FGF1:FGF2 chimeric growth factor exhibits universal FGF receptor specificity, enhanced stability and augmented activity useful for epithelial proliferation and radioprotection. Biochim Biophys Acta., 2008. 1780: p1432-1440.
[100] Onuma Y, Higuchi K, Aiki Y, Shu Y, Asada M, et al. , A Stable Chimeric Fibroblast Growth Factor (FGF) Can Successfully Replace Basic FGF in Human Pluripotent Stem Cell Culture. PLoS ONE, 2015. 10(4): e0118931.
[101] Serra M, Brito C, Correia C, Alves PM, Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol, 2013. 30(6): p350–359.
[102] Ohgushi M, Sasai Y, Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol, 2011. 21(5): p274–282.
[103] Peerani R, et al., Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J, 2007. 26(22): p4744–4755.
[104] Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH, Concise review: The evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings. Stem Cells, 2013. 31(1): p1–7.
[105] McDevitt TC, Palecek SP, Innovation in the culture and derivation of pluripotent human stem cells. Curr Opin Biotechnol, 2008. 19(5): p527–533.
[106] Chen VC et al., Scalable GMP compliant suspension culture system for human ES cells.Stem Cell Res (Amst), 2012. 8(3): p388–402.
[107] Steiner D, et al., Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol, 2010. 28(4): p361–364.
[108] Amit M et al., Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc, 2011. 6(5): p572–579.
[109] Zweigerdt R, Olmer R, Singh H, averich A, Martin U, Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc, 2011. 6(5): p689–700.
[110] Nie Y, Bergendahl V, Hei DJ, Jones JMPS, Palecek SP, Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog, 2009. 25(1): p20–31.
[111] Chen AK, Chen X, Choo AB, Reuveny S, Oh SK, Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res (Amst), 2011. 7(2): p97–111.
[112] Serra M et al., Microencapsulation technology: A powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 2011. 6(8):e23212.
[113] Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O, Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet, 2008. 17(R1): R48–R53.
[114] Yuguo Lei, David V. Schaffer, A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. PNAS, 2013. 110(52): E5039–E5048.
[115] Ohgushi M., Sasai Y., Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol, 2011. 21(5): p274–282.
[116] Watanabe K. et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol, 2007. 25(6): p681–686.
[117] Xu Y. et al., Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA, 2010. 107(18): p8129–8134.
[118] Ohgushi M, et al., Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell, 2010. 7(2): p225–239.
[119] Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
[120] O′Connor, M.D., et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 2008. 26(5): p. 1109-16.
[121] Kokubu, F., et al., Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J, 1988. 7(11): p. 3413-22.
[122] Pera, M.F., B. Reubinoff, and A. Trounson, Human embryonic stem cells. J Cell Sci, 2000. 113 ( Pt 1): p. 5-10.
[123] Andrews, P.W., et al., Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. Hybridoma, 1984. 3(1): p. 33-9.
[124] Brimble, S.N., et al., Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev, 2004. 13(6): p. 585-97.
[125] Ma, T., et al., [Basic research on the mechanism of venous reverse flow in reverse-flow island flap]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2005. 19(9): p. 758-61.
[126] Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol, 2008. 138(1-2): p. 24-32.
[127] Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol, 2008. 133(1): p. 146-53.
[128] Baxter, M.A., et al., Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res, 2009. 3(1): p. 28-38.
[129] Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
[130] Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
[131] Yamanaka, S., et al., Pluripotency of embryonic stem cells. Cell Tissue Res, 2008. 331(1): p. 5-22.
[132] Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
[133] Harkness, L., et al., Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev, 2009. 5(4): p. 353-68.
[134] Cameron, C.M., W.-S. Hu, and D.S. Kaufman, Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnology and Bioengineering, 2006. 94(5): p. 938-948.
[135] Aubry, L., et al., Improvement of Culture Conditions of Human Embryoid Bodies Using a Controlled Perfused and Dialyzed Bioreactor System. Tissue Engineering Part C-Methods, 2008. 14(4): p. 289-298.
[136] Gerecht-Nir, S., S. Cohen, and J. Itskovitz-Eldor, Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnology and Bioengineering, 2004. 86(5): p. 493-502.
[137] Yirme, G., et al., Establishing a Dynamic Process for the Formation, Propagation, and Differentiation of Human Embryoid Bodies. Stem Cells and Development, 2008. 17(6): p. 1227-1241.
[138] Singh, H., et al., Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Research, 2010. 4(3): p. 165-179.
[139] Amit, M., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010. 6(2): p. 248-259.
[140] Kehoe, D.E., et al., Scalable Stirred-Suspension Bioreactor Culture of Human Pluripotent Stem Cells. Tissue Engineering Part A, 2010. 16(2): p. 405-421.
[141] Krawetz, R., et al., Large-Scale Expansion of Pluripotent Human Embryonic Stem Cells in Stirred-Suspension Bioreactors. Tissue Engineering Part C-Methods, 2010. 16(4): p. 573-582.
[142] Niebruegge, S., et al., Generation of Human Embryonic Stem Cell-Derived Mesoderm and Cardiac Cells Using Size-Specified Aggregates in an Oxygen-Controlled Bioreactor. Biotechnology and Bioengineering, 2009. 102(2): p. 493-507.
[143] Olmer, R., et al., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010. 5(1): p. 51-64.
[144] Lock, L.T. and E.S. Tzanakakis, Expansion and Differentiation of Human Embryonic Stem Cells to Endoderm Progeny in a Microcarrier Stirred-Suspension Culture. Tissue Engineering Part A, 2009. 15(8): p. 2051-2063.
[145] Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Brazilian Journal of Medical and Biological Research, 2009. 42(6): p. 515-522.
[146] Oh, S.K.W., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research, 2009. 2(3): p. 219-230.
[147] Storm, M.P., et al., Three-Dimensional Culture Systems for the Expansion of Pluripotent Embryonic Stem Cells. Biotechnology and Bioengineering, 2010. 107(4): p. 683-695.
[148] Lecina, M., et al., Scalable Platform for Human Embryonic Stem Cell Differentiation to Cardiomyocytes in Suspended Microcarrier Cultures. Tissue Engineering Part C-Methods, 2010. 16(6): p. 1609-1619.
[149] Chen, A.K., et al., Expansion of Human Embryonic Stem Cells on Cellulose Microcarriers, in Current Protocols in Stem Cell Biology. 2007, John Wiley & Sons, Inc.
[150] Chen, A.K.-L., et al., Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research, 2011. 7(2): p. 97-111.
[151] Jing, D., A. Parikh, and E.S. Tzanakakis, Cardiac Cell Generation From Encapsulated Embryonic Stem Cells in Static and Scalable Culture Systems. Cell Transplantation, 2010. 19(11): p. 1397-1412.
[152] Siti-Ismail, N., et al., The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 2008. 29(29): p. 3946-3952.
[153] Chin-Chen Yeh, Saradaprasan Muduli, I-Chia Peng, Yi-Tung Lu, Qing-Dong Ling, Abdullah A. Alarfaje, Murugan A. Munusamy, S. Suresh Kumar, Kadarkarai Murugan, Da-Chung Chen, Hsin-chung Lee, Yung Chang, Akon Higuchi*, Data of continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces, Data in Brief, 2016. 6: p.603-608
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2016-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明