參考文獻 |
[1] Serra, M., et al., Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 2012. 30(6): p. 350-359.
[2] Andrews, P.W., et al., Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans, 2005. 33(Pt 6): p. 1526-30.
[3] Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
[4] Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
[5] Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
[6] Beth, S. et al., Therapies of the state. Nature Biotechnology, 2014. 32(2984): p. 736–41.
[7] Diehn, M., R.W. Cho, and M.F. Clarke, Therapeutic implications of the cancer stem cell hypothesis. Semin Radiat Oncol, 2009. 19(2): p. 78-86.
[8] Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
[9] Strulovici, Y., et al., Human embryonic stem cells and gene therapy. Molecular Therapy, 2007. 15(5): p. 850-866.
[10] Angelika E. Schnieke, Alexander J. Kind, William A. Ritchie, Karen Mycock, Angela R. Scott, Marjorie Ritchie, Ian Wilmut, Alan Colman, Keith H. S. Campbell, Human Factor IX Transgenic Sheep Produced by Transfer of Nuclei from Transfected Fetal Fibroblasts. Science, 1997. 5346: 2130-2133
[11] Chad A. Cowan, Jocelyn Atienza, Douglas A. Melton, Kevin Eggan, Nuclear Reprogramming of Somatic Cells After Fusion with Human Embryonic Stem Cells. Science, 2005. 5739: pp. 1369-1373.
[12] Masako Tadaa, Yousuke Takahamaa, Kuniya Abe, Norio Nakatsuji, Takashi Tada, Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology, 2001. 11: pp. 1553–1558.
[13] Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008. 26(1): p. 101-106.
[14] Daisy A. Robinton, George Q. Daley, The promise of induced pluripotent stem cells in research and therapy. Nature, 2012. 481: pp. 295–305.
[15] Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
[16] Yu, J., et al., Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science, 2009. 324(5928): p. 797-801.
[17] Genetic Science Learning Center (2014, June 22) Stem Cell Quick Reference. Learn.Genetics. Retrieved April 28, 2016, from http://learn.genetics.utah.edu/content/stemcells/quickref/
[18] Lin, C.S., et al., Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol, 2010. 25(6): p. 807-15.
[19] Michel, Gurvan, Thierry Tonon, Delphine Scornet, J. Mark Cock, Bernard Kloareg , The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 2010. 188(1): 82–97.
[20] Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature biotechnology, 2010. 28(6): p. 611-5.
[21] Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of biotechnology, 2010. 146(3): p. 143-6.
[22] Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
[23] Azarin, S.M. and S.P. Palecek, Development of scalable culture systems for human embryonic stem cells. Biochemical Engineering Journal, 2010. 48(3): p. 378-384.
[24] Serra, M. et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J. Biotechnol, 2010. 148: p 208–215
[25] Ferreira, L.S., et al., Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007. 28(17): p. 2706-17.
[26] Maia, J., et al., Controlling the Neuronal Differentiation of Stem Cells by the Intracellular Delivery of Retinoic Acid-Loaded Nanoparticles. Acs Nano, 2011. 5(1): p. 97-106.
[27] Ao, A., J.J. Hao, and C.C. Hong, Regenerative Chemical Biology: Current Challenges and Future Potential. Chemistry & Biology, 2011. 18(4): p. 413-424.
[28] Burdick, J.A. and F.M. Watt, High-throughput stem-cell niches. Nature Methods, 2011. 8(11): p. 915-916.
[29] F. van Roya and G. Berx, The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci., 2008. 65(23): p. 3756 – 3788.
[30] What are adult stem cells?. In Stem Cell Information. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2015. http://stemcells.nih.gov/info/basics/pages/basics4.aspx
[31] Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89.
[32] Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
[33] A. Higuchi, S.-H. Kao, Q.-D. Ling, Y.-M. Chen, H.-F. Li, A. A. Alarfaj, M. A. Munusamy, K. Murugan, S.-C. Chang, H.-C. Lee, S.-T. Hsu, S. S. Kumar, A. Umezawa, Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci. Rep.,2015. 5, 18136.
[34] Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
[35] Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell cul-ture proteins as extracellular matrices for stem cell differentiation.Chem Rev, 2012. 112: p. 4507–40.
[36] Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
[37] Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of biotechnology, 2010. 146(3): p. 143-6.
[38] Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-U72.
[39] Meng, G., S. Liu, and D.E. Rancourt, Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev, 2012. 21(11): p. 2036-48.
[40] Nishishita, N., et al., Generation of Virus-Free Induced Pluripotent Stem Cell Clones on a Synthetic Matrix via a Single Cell Subcloning in the Naive State. Plos One, 2012. 7(6).
[41] McCormick, C.L., et al., RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter, 2008. 4(9): p. 1760-1773.
[42] Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature protocols, 2011. 6(7): p. 1037-43.
[43] Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
[44] Harb, N., T.K. Archer, and N. Sato, The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells. Plos One, 2008. 3(8).
[45] Carlson, A.L., et al., Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments. Faseb Journal, 2012. 26(8): p. 3240-3251.
[46] Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. Bmc Developmental Biology, 2010. 10.
[47] Stephenson, E., et al., Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nature protocols, 2012. 7(7): p. 1366-81.
[48] Lu, H.F., et al., A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials, 2012. 33(8): p. 2419-2430.
[49] Peng IC, Yeh CC, Lu YT, Chang Y, Higuchi A, et al., Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces, Biomaterials, 76 (2016) 76-86.
[50] Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-44.
[51] Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature protocols, 2011. 6(7): p. 1037-43.
[52] Irwin, E.E., et al., Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 2011. 32(29): p. 6912-6919.
[53] Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
[54] Zhang, R., et al., A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Communications, 2013. 4.
[55] Guokai Chen, Daniel R Gulbranson, Zhonggang Hou, Jennifer M Bolin, Victor Ruotti, Mitchell D Probasco, Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 2011. 8: p424–429
[56] Higuchi, A., et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules, 2004. 5(5): p. 1770-4.
[57] Higuchi, A., et al., Temperature-dependent cell detachment on Pluronic gels. Biomacromolecules, 2005. 6(2): p. 691-6.
[58] Tamura, A., et al., Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials, 2012. 33(15): p. 3803-12.
[59] Saito, T., et al., Reversal of Diabetes by the Creation of Neo-Islet Tissues Into a Subcutaneous Site Using Islet Cell Sheets. Transplantation, 2011. 92(11): p. 1231-1236.
[60] Wei, H., et al., Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009. 34(9): p. 893-910.
[61] Yamada, N., et al., Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications, 1990. 11(11): p. 571-576.
[62] Okano, T., et al., A NOVEL RECOVERY-SYSTEM FOR CULTURED-CELLS USING PLASMA-TREATED POLYSTYRENE DISHES GRAFTED WITH POLY(N-ISOPROPYLACRYLAMIDE). Journal of Biomedical Materials Research, 1993. 27(10): p. 1243-1251.
[63] Nakajima, K., et al., Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials, 2001. 22(11): p. 1213-1223.
[64] Nobuo Kanai and Masayuki Yamato and Teruo Okano, Cell sheets engineering for esophageal regenerative medicine. Annals of Translational Medicine, 2014. 2(3): 28
[65] Akiyama Y, Kikuchi A, Yamato M et al. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 2004. 20: p. 5506–11.
[66] Fukumori K, Akiyama Y, Yamato M et al. Temperature-responsive glass overslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomater 2009;5:470–6.
[67] Tang, Z., Y. Akiyama, and T. Okano, Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering. Polymers, 2012. 4(3): p. 1478-1498.
[68] Kikuchi, A. and T. Okano, Nanostructured designs of biomedical materials: Applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release, 2005. 101(1-3): p. 69-84.
[69] Takei, Y.G., et al., DYNAMIC CONTACT-ANGLE MEASUREMENT OF TEMPERATURE-RESPONSIVE SURFACE-PROPERTIES FOR POLY(N-ISOPROPYLACRYLAMIDE) GRAFTED SURFACES. Macromolecules, 1994. 27(21): p. 6163-6166.
[70] Yakushiji, T., et al., Graft Architectural Effects on Thermoresponsive Wettability Changes of Poly(N-isopropylacrylamide)-Modified Surfaces. Langmuir, 1998. 14(16): p. 4657-4662.
[71] Yamato, M., et al., Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Progress in Polymer Science, 2007. 32(8–9): p. 1123-1133.
[72] Aoyagi T, Ebara M, Sakai K et al. Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Ed, 2000. 11: p101–10.
[73] Yamada KM. Adhesive recognition sequences. J Biol. Chem., 1991. 266:1 p2809–12.
[74] Ebara M, Yamato M, Aoyagi T et al. Temperature-responsive cell culture surfaces enable “on–off” affinity control between cell integrins and RGDS ligands. Biomacromolecules, 2004. 5: p505–10.
[75] Arisaka Y, Kobayashi J, Yamato M et al. Switching of cell growth/ detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Biomaterials,2013. 34: 4214–22.
[76] Tang Z, Okano T. Recent development of temperature-responsive surfaces and their application for cell sheet engineering. Regenerative Biomaterials, 2014.1(1): p91-102.
[77] Guillame-Gentil O, Semenov O, Roca A et al. Engineering the extracellular environment: strategies for building 2D and 3D cellular structures. Adv Mater, 2010. 22: p5443–62.
[78] Kaji H, Camci-Unal G, Langer R et al. Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochim Biophys Acta, 2011. 1810: p239–50.
[79] Zorlutuna P, Annabi N, Camci-Unal G et al. Microfabricated biomaterials for engineering 3D tissues. Adv Mater, 2012. 24: p1782–804.
[80] Takahashi H, Nakayama M, Itoga K et al. Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures. Biomacromolecules, 2011. 12: p1414–8.
[81] Kwon OH, Kikuchi A, Yamato M et al. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J Biomed Mater Res, 2000. 50: p82–9.
[82] Kwon OH, Kikuchi A, Yamato M et al. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials, 2003. 24: P1223–32
[83] Yoshida R, Uchida K, Kaneko Y et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature, 1994. 374: p240–2.
[84] Kaneko Y, Sakai K, Kikuchi A et al. Fast swelling/deswelling kinetics of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromol Symp, 1996. 109: p41–53.
[85] Temperature-responsive surfaces and cell sheet engineering 101 Downloaded fromhttp://rb.oxfordjournals.org/ by guest on May 1, 2016
[86] Tang Z, Akiyama Y, Yamato M et al. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials, 2010. 31: p7435–43
[87] Veraitch, F.S., et al., The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnology and Bioengineering, 2008. 99(5): p. 1216-1229.
[88] Ezashi, T., P. Das, and R.M. Roberts, Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): p. 4783-4788.
[89] Okita et al., Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448 (7151): p313-U1
[90] J.Y. Yu, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318 (5858): p1917–1920
[91] Skottman, H. & Hovatta, O., Culture conditions for human embryonic stem
cells. Reproduction,2006. 132: p691–698.
[92] Akopian, V. et al., Comparison of defied culture systems for feeder cell
free propagation of human embryonic stem cells. In Vitro Cell Dev. Biol.
Anim.,2010. 46: p247–258.
[93] Garcia-Gonzalo, F.R. & Izpisua Belmonte, J.C., Albumin-associated lipids
regulate human embryonic stem cell self-renewal. PLoS ONE,2008. 3: e1384.
[94] https://www.thermofisher.com/order/catalog/product/A1517001, Life technologies,
[95] Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O′Sullivan C, et al., Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells. 2005. 23: p315–323.
[96] Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, et al., Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells, 2006. 24: p568–574.
[97] Dvorak P, Hampl A. Basic fibroblast growth factor and its receptors in human embryonic stem cells. Folia Histochem Cytobiol, 2005. 43: p203–208.
[98] Avery S, Inniss K, Moore H. The regulation of self-renewal in human embryonic stem cells. Stem Cells. Dev., 2006. 15: p729–740.
[99] Motomura K, Hagiwara A, Komi-Kuramochi A, Hanyu Y, Honda E, Suzuki M, et al. An FGF1:FGF2 chimeric growth factor exhibits universal FGF receptor specificity, enhanced stability and augmented activity useful for epithelial proliferation and radioprotection. Biochim Biophys Acta., 2008. 1780: p1432-1440.
[100] Onuma Y, Higuchi K, Aiki Y, Shu Y, Asada M, et al. , A Stable Chimeric Fibroblast Growth Factor (FGF) Can Successfully Replace Basic FGF in Human Pluripotent Stem Cell Culture. PLoS ONE, 2015. 10(4): e0118931.
[101] Serra M, Brito C, Correia C, Alves PM, Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol, 2013. 30(6): p350–359.
[102] Ohgushi M, Sasai Y, Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol, 2011. 21(5): p274–282.
[103] Peerani R, et al., Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J, 2007. 26(22): p4744–4755.
[104] Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH, Concise review: The evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings. Stem Cells, 2013. 31(1): p1–7.
[105] McDevitt TC, Palecek SP, Innovation in the culture and derivation of pluripotent human stem cells. Curr Opin Biotechnol, 2008. 19(5): p527–533.
[106] Chen VC et al., Scalable GMP compliant suspension culture system for human ES cells.Stem Cell Res (Amst), 2012. 8(3): p388–402.
[107] Steiner D, et al., Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol, 2010. 28(4): p361–364.
[108] Amit M et al., Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc, 2011. 6(5): p572–579.
[109] Zweigerdt R, Olmer R, Singh H, averich A, Martin U, Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc, 2011. 6(5): p689–700.
[110] Nie Y, Bergendahl V, Hei DJ, Jones JMPS, Palecek SP, Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog, 2009. 25(1): p20–31.
[111] Chen AK, Chen X, Choo AB, Reuveny S, Oh SK, Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res (Amst), 2011. 7(2): p97–111.
[112] Serra M et al., Microencapsulation technology: A powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 2011. 6(8):e23212.
[113] Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O, Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet, 2008. 17(R1): R48–R53.
[114] Yuguo Lei, David V. Schaffer, A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. PNAS, 2013. 110(52): E5039–E5048.
[115] Ohgushi M., Sasai Y., Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol, 2011. 21(5): p274–282.
[116] Watanabe K. et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol, 2007. 25(6): p681–686.
[117] Xu Y. et al., Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA, 2010. 107(18): p8129–8134.
[118] Ohgushi M, et al., Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell, 2010. 7(2): p225–239.
[119] Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
[120] O′Connor, M.D., et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 2008. 26(5): p. 1109-16.
[121] Kokubu, F., et al., Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J, 1988. 7(11): p. 3413-22.
[122] Pera, M.F., B. Reubinoff, and A. Trounson, Human embryonic stem cells. J Cell Sci, 2000. 113 ( Pt 1): p. 5-10.
[123] Andrews, P.W., et al., Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. Hybridoma, 1984. 3(1): p. 33-9.
[124] Brimble, S.N., et al., Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev, 2004. 13(6): p. 585-97.
[125] Ma, T., et al., [Basic research on the mechanism of venous reverse flow in reverse-flow island flap]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2005. 19(9): p. 758-61.
[126] Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol, 2008. 138(1-2): p. 24-32.
[127] Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol, 2008. 133(1): p. 146-53.
[128] Baxter, M.A., et al., Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res, 2009. 3(1): p. 28-38.
[129] Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
[130] Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
[131] Yamanaka, S., et al., Pluripotency of embryonic stem cells. Cell Tissue Res, 2008. 331(1): p. 5-22.
[132] Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
[133] Harkness, L., et al., Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev, 2009. 5(4): p. 353-68.
[134] Cameron, C.M., W.-S. Hu, and D.S. Kaufman, Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnology and Bioengineering, 2006. 94(5): p. 938-948.
[135] Aubry, L., et al., Improvement of Culture Conditions of Human Embryoid Bodies Using a Controlled Perfused and Dialyzed Bioreactor System. Tissue Engineering Part C-Methods, 2008. 14(4): p. 289-298.
[136] Gerecht-Nir, S., S. Cohen, and J. Itskovitz-Eldor, Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnology and Bioengineering, 2004. 86(5): p. 493-502.
[137] Yirme, G., et al., Establishing a Dynamic Process for the Formation, Propagation, and Differentiation of Human Embryoid Bodies. Stem Cells and Development, 2008. 17(6): p. 1227-1241.
[138] Singh, H., et al., Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Research, 2010. 4(3): p. 165-179.
[139] Amit, M., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010. 6(2): p. 248-259.
[140] Kehoe, D.E., et al., Scalable Stirred-Suspension Bioreactor Culture of Human Pluripotent Stem Cells. Tissue Engineering Part A, 2010. 16(2): p. 405-421.
[141] Krawetz, R., et al., Large-Scale Expansion of Pluripotent Human Embryonic Stem Cells in Stirred-Suspension Bioreactors. Tissue Engineering Part C-Methods, 2010. 16(4): p. 573-582.
[142] Niebruegge, S., et al., Generation of Human Embryonic Stem Cell-Derived Mesoderm and Cardiac Cells Using Size-Specified Aggregates in an Oxygen-Controlled Bioreactor. Biotechnology and Bioengineering, 2009. 102(2): p. 493-507.
[143] Olmer, R., et al., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010. 5(1): p. 51-64.
[144] Lock, L.T. and E.S. Tzanakakis, Expansion and Differentiation of Human Embryonic Stem Cells to Endoderm Progeny in a Microcarrier Stirred-Suspension Culture. Tissue Engineering Part A, 2009. 15(8): p. 2051-2063.
[145] Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Brazilian Journal of Medical and Biological Research, 2009. 42(6): p. 515-522.
[146] Oh, S.K.W., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research, 2009. 2(3): p. 219-230.
[147] Storm, M.P., et al., Three-Dimensional Culture Systems for the Expansion of Pluripotent Embryonic Stem Cells. Biotechnology and Bioengineering, 2010. 107(4): p. 683-695.
[148] Lecina, M., et al., Scalable Platform for Human Embryonic Stem Cell Differentiation to Cardiomyocytes in Suspended Microcarrier Cultures. Tissue Engineering Part C-Methods, 2010. 16(6): p. 1609-1619.
[149] Chen, A.K., et al., Expansion of Human Embryonic Stem Cells on Cellulose Microcarriers, in Current Protocols in Stem Cell Biology. 2007, John Wiley & Sons, Inc.
[150] Chen, A.K.-L., et al., Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research, 2011. 7(2): p. 97-111.
[151] Jing, D., A. Parikh, and E.S. Tzanakakis, Cardiac Cell Generation From Encapsulated Embryonic Stem Cells in Static and Scalable Culture Systems. Cell Transplantation, 2010. 19(11): p. 1397-1412.
[152] Siti-Ismail, N., et al., The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 2008. 29(29): p. 3946-3952.
[153] Chin-Chen Yeh, Saradaprasan Muduli, I-Chia Peng, Yi-Tung Lu, Qing-Dong Ling, Abdullah A. Alarfaje, Murugan A. Munusamy, S. Suresh Kumar, Kadarkarai Murugan, Da-Chung Chen, Hsin-chung Lee, Yung Chang, Akon Higuchi*, Data of continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces, Data in Brief, 2016. 6: p.603-608 |