博碩士論文 103324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.225.72.113
姓名 葉冠麟(Kuan-Lin Yeh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Integration of Chemical Synthesis with Co-crystallization: The Study of 1:1 Sulfathiazole-Theophylline and 1:1 Sulfathiazole-Sulfanilamide Co-crystal Systems)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ The Effect of Upstream Performance of Biocatalytic Reaction on Downstream Purification Feasibility in Glycine Production Using Immobilized Aminoacylase★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選
★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長
★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究★ 蔗糖的同質異構型構
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 共晶是改善藥物溶解度的方法之一,近幾年來發展尤為迅速,但大部分的研究仍著重於共晶本身的探討而並未考慮化學合成,因此本篇研究主要目的在於結合化學反應與共結晶的製程,對於磺胺噻唑(sulfathiazole)-茶鹼(theophylline)共晶與磺胺噻唑(sulfathiazole)-氨苯磺胺(sulfanilamide)共晶的製程進行討論,組成此兩種共晶的成分其莫爾比均為一比一。首先,依據文獻所提供的反應,我們可以製造出Form III磺胺噻唑與β-form、γ-form混合的氨苯磺胺。為了將化學反應與共晶製程串連在一起,我們在磺胺噻唑的合成過程中加入茶鹼,並進行酸鹼中和使磺胺噻唑-茶鹼共晶析出沉澱,而磺胺噻唑-氨苯磺胺共晶則是於氨苯磺胺的合成過程中,加入磺胺噻唑並酸鹼中和令共晶形成,獲得的晶體經粉末X射線繞射儀(PXRD)、示差掃描量熱儀(DSC)及傅立葉轉換紅外線光譜儀(FT-IR)等儀器檢測後證實的確為共晶,由此製程所獲得的磺胺噻唑-茶鹼與磺胺噻唑-氨苯磺胺的產率分別為81.02wt%與88.48wt%。此外,我們也探討了磺胺噻唑與茶鹼以及磺胺噻唑與氨苯磺胺的添加比例對產物的影響,在磺胺噻唑-茶鹼共晶的部分,除了添加比例為接近一的情況外,磺胺噻唑或茶鹼皆會作為不純物出現在產物中,在磺胺噻唑-氨苯磺胺共晶的部分,當添加比例為1:1.5與1:1時,我們觀察到產物為磺胺噻唑-氨苯磺胺與磺胺噻唑的混合物,而當添加比例為1:0.5時,產物則為磺胺噻唑-氨苯磺胺與氨苯磺胺的混合物。我們還嘗試將磺胺噻唑和氨苯磺胺的合成步驟合併,也成功製造出磺胺噻唑-氨苯磺胺的共晶,這項研究不僅能夠減少製程所需的步驟,也同時符合「綠色製程」的概念,此外也具有發展成連續式製程的可能性。在溶解度測試的部分,兩種共晶的溶解度均介於各自形成體的溶解度之間,磺胺噻唑-茶鹼在15°C、25°C、40°C及6°C純水中的溶解度大約為每毫升0.28、0.81、0.91及3.61毫克,而磺胺噻唑-氨苯磺胺在15°C、25°C、40°C及60°C純水中的溶解度則分別為每毫升0.59、1.10、2.18與4.30毫克。最後,將磺胺噻唑-茶鹼共晶與磺胺噻唑-氨苯磺胺置於相對濕度75%、40°C的環境裡一個月,測試這兩種共晶對於濕度的穩定性。
摘要(英) Co-crystals has been regarded as an approach to promote the solubility of drugs and developed rapidly in recent years. However, most of the studies mainly focus on the co-crystallization step rather than concerning about the synthesis and co-crystallization together. The aim of this thesis was integrating the co-crystallization with chemical synthesis to produce the 1:1 co-crystals of sulfathiazole-theophylline (STZ-THE) and 1:1 co-crystals of sulfathiazole-sulfanilamide (STZ-SNM). According to the original regular synthetic method, the sulfathiazole Form III and a mixture of sulfanilamide β-form and γ-from were obtained. The 1:1 co-crystals of STZ-THE was produced by adding theophylline into the synthetic process of sulfathiazole, and the 1:1 co-crystals of STZ-SNM was obtained by introducing sulfanilamide into the synthetic process of sulfanilamide. Based on the concept of direct co-crystal assembly, we successfully produces the 1:1 co-crystals of STZ-THE and 1:1 co-crystals of STZ-SNM by integrating the chemical synthesis and co-crystallization. The yield of 1:1 co-crystals of STZ-THE and 1:1 co-crystals of STZ-SNM obtained by integration method were 81.02 wt% and 88.48 wt%, respectively. In the study of the loading ratio (LR) of API to co-former, the impurity would be formed except LR was close to 1 for 1:1 co-crystals of STZ-THE based on the characterization of PXRD, DSC and FT-IR. In addition, either sulfanilamide or sulfathiazole was formed in the product of 1:1 co-crystals of STZ-SNM regardless of the value of LR. The experiment of combining the synthesis of sulfathiazole and sulfanilamide for preparing the 1:1 co-crystals of STZ-SNM was successful even though traces of impurity were presented. This study might correspond with the new concept of “green process”. It not only reduced the processing steps, but also had the potential to be developed for continuous co-crystallization. The solubility of two co-crystals was between their individual components. The solubility of 1:1 co-crystals of STZ-THE in water at 15°C, 25°C, 40°C and 60°C was 0.28, 0.81 ,0.91 and 3.6 mg/mL, respectively. On the other hand, the solubility of 1:1 co-crystals of STZ-SNM in water at 15°C, 25°C, 40°C and 60°C was 0.59, 1.10, 2.18 and 4.30 mg/mL. Finally, both 1:1 co-crystals of STZ-THE and 1:1 co-crystals of STZ-SNM were stored in a condition of 75% relative humidity and 40°C to test the moisture stability of co-crystals.
關鍵字(中) ★ 共晶
★ 磺胺噻唑
★ 氨苯磺胺
★ 一鍋式製程
關鍵字(英) ★ co-crystal
★ sulfathiazole
★ sulfanilamide
★ one-pot process
論文目次 摘要 i
Abstract iii
Acknowledgement v
List of Figures ix
List of Tables xiv
List of Schemes xv
Chapter 1 Introduction 1
1.1 The Development of Drug in Pharmaceutical Industry 1
1.2 Introduction of Co-crystal 5
1.3 Brief Introduction of Sulfathiazole and Sulfanilamide 8
1.4 Conceptual Framework 12
1.5 References 15
Chapter 2 Experimental Materials and Methods 23
2.1 Materials 23
2.1.1 Chemicals 23
2.1.2 Solvents 23
2.2 Experimental Procedures 25
2.2.1 Preparation of 1:1 Co-crystals of Sulfathiazole-Theophylline (STZ-THE) and 1:1 Co-crystals of Sulfathiazole-Sulfanilamide (STZ-SNM) by Re-crystallization. 25
2.2.2 Synthesis of Sulfathiazole and Sulfanilamide. 27
2.2.3 Integration of Chemical Synthesis with Co-crystallization. 31
2.2.4 Preparation of 1:1 Co-crystals of STZ-SNM by Combining the Synthesis of Sulfathiazole and Sulfanilamide. 33
2.2.5 Solubility Test. 35
2.2.6 Moisture Stability Test. 36
2.3 Analytical Measurements 37
2.3.1 Optical Microscopy (OM) 37
2.3.2 Thermogravimetric Analysis (TGA) 38
2.3.3 Differential Scanning Calorimetry (DSC) 39
2.3.4 Fourier-Transform Infrared (FT-IR) Spectroscopy 39
2.3.5 Ultraviolet and Visible Spectrophotometer (UV/vis) 40
2.3.6 Powder X-ray Diffraction (PXRD) 41
2.4 References 42
Chapter 3 The Study of 1:1 Co-crystals of STZ-THE and 1:1 Co-crystals of STZ-SNM 43
3.1 Introduction 43
3.2 Results and Discussion 49
3.2.1 Production of Sulfathiazole and Sulfanilamide. 49
3.2.2 Integration of Co-crystal with Chemical Synthesis. 60
3.2.3 Effect of Loading Ratio 68
3.2.4 Preparation of 1:1 Co-crystals of STZ-SNM by Combining the Synthesis of Sulfathiazole and Sulfanilamide. 79
3.2.5 Solubility Test 81
3.2.6 Moisture Stability Test 82
3.2.7 Conclusions 83
3.3 References 85
Chapter 4 Future Works 92
參考文獻 Chapter 1.
1. DeCamp, W. H. The impact of Polymorphism on Drug Development: A Regular’s Viewpoint. 1999, XVIII Congress of the International Union of Crystallography.
2. Federsel, H. -J. Chemical Process Research and Development in the 21st Century: Challenges, Strategies, and Solutions from a Pharmaceutical Industry Perspective. Acc. Chem. Res. 2009, 42 (5), 671-680.
3. Chong, C. R.; Sullivan Jr., D. J. New Uses for Old Drugs. Nature 2007, 448 (7154), 645-646.
4. Chen, Y. S.; Chang, K. C. The Relationship Between a Firm′s Patent Quality and Its Market Value — The Case of US Pharmaceutical Industry. Technol. Forecast. Soc. Change 2010, 77 (1), 20-33.
5. El-Zhry El-Yafi, A. K.; El-Zein, H. Technical Crystallization for Application in Pharmaceutical Material Engineering: Review Article. Asian J. Pharm. Sci. 2015, 10 (4), 283-291.
6. Gilchrist, A. 10 Best-Selling Brand-Name Drugs in 2015. http://www.pharmacytimes.com/news/10-best-selling-brand-name-drugs-in-2015/ (accessed 04/26/2016), part of Pharmacy Times, http://www.pharmacytimes.com/
(accessed 04/26/2016).
7. Byn, S.; Morris, K.; Comella, S. Reducing Time to Market with: A Science-Based Management Strategy. Pharm. Technol. 2005, 46-56.
8. Censi, R.; Di Martino, P. Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs. Molecules 2015, 20 (10), 18759-18776.
9. Baghel, R.S; Singh, S.; Yadav, L. A Review on Solid Dispersion. Int. J. Pharm. Life Sci. 2011, 2 (9). 1078-1095.
10. Lee, T.; Chiu, Y. H.; Lee, Y.; Lee, H. L. Thermal Properties and Structural Characterizations of New Types of Phase Change Material: Anhydrous and Hydrated Palmitic Acid/Camphene Solid Dispersions. Thermochim. Acta 2014, 575 (10), 81-89.
11. Serajuddin, A. Solid Dispersion of Poorly Water-Soluble Drugs: Early Promises, Subsequent Problems, and Recent Breakthroughs. J. Pharm. Sci. 1999, 88 (10), 1058-1066.
12. Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation Design for Poorly Water-Soluble Drugs Based on Biopharmaceutics Classification System: Basic Approaches and Practical Applications. Int. J. Pharm. 2011, 420 (1), 1-10.
13. Rogers, T. L; Overhoff, K. A.; Shah, P.; Santiago, P.; Yacaman, M. J.; Johnston, K. P.; Williams III, R. O. Micronized Powders of a Poorly Water Soluble Drug Produced by a Spray-Freezing into Liquid-Emulsion Process. Eur. J. Pharm. Biopharm. 2003, 55 (2), 161-172.
14. Serajuddin, A. T. M. Salt Formation to Improve Drug Solubility. Adv. Drug Deliv. Rev. 2007, 59 (7), 603-616.
15. Lee, T.; Hung, S. T.; Kuo, C. S. Polymorph Farming of Acetaminophen and Sulfathiazole on a Chip. Pharm. Res. 2006, 23 (11), 2542-2555.
16. Hu, Y.; Erxleben, A.; Hodnett, B. K.; Li, B.; McArdle, P.; Rasmuson, Å. C.; Ryder, A.G. Solid-State Transformations of Sulfathiazole Polymorphs: The Effects of Milling and Humidity. Cryst. Growth Des. 2013, 13 (8), 3404-3413
17. Duggirala, N. K.; Perry, M. L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical Cocrystals: Along the Path to Improved Medicines. Chem. Commun. 2016, 52 (4), 640-655.
18. Almarsson, Ö.; Vadas, E. B. Molecules, Materials, Medicines (M3): Linking Molecules to Medicines through Pharmaceutical Material Science. Cryst. Growth Des. 2015, 15 (12), 5645-5647.
19. Lu, J.; Rohani, S. Preparation and Characterization of Theophylline-Nicotinamide Cocrystal. Org. Process Res. Dev. 2009, 13 (6), 1269-1275.
20. Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical Cocrystals and Poorly Soluble Drugs. Int. J. Pharm. 2013, 453 (1), 101-125.
21. Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical Cocrystals: An Overview. Int. J. Pharm. 2011, 419 (1), 1-11.
22. Schulthesis, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9 (6), 2950-2967.
23. Sarcevica, I.; Orola, L.; Veidis, M. V.; Podjava, A.; Belyakov, S. Crystal and Molecular Structure and Stability of Isoniazid Cocrystals with Selected Carboxylic Acids. Cryst. Growth. Des. 2013, 13 (3), 1082-1090.
24. Sanphui, P.; Mishra, M. K.; Ramamurty, U.; Desiraju, G. R. Tuning Mechanical Properties of Pharmaceutical Crystals with Multicomponent Crystals: Voriconazole as a Case Study. Mol. Pharmacol. 2015, 12 (3), 889-897.
25. Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.L.; Lee, S. W.; Hu, J. C.; Chen, L. T. Stabilization and Spheroidization of Ammonium Nitrate: Co-Crystallization with Crown Ethers and Spherical Crystallization by Solvent Screening. Chem. Eng. J. 2013, 225 (1), 809-817.
26. Hickey, M. B.; Peterson, M. L.; Scoppettuolo, L. A.; Morrisette, S. L.; Vetter, A.; Guzmán, H.; Remenar, J. F.; Zhang, Z.; Tawa, M. D.; Haley, S.; Zaworotko, M. J.; Almarsson, Ö. Eur. Performance Comparison of a Co-crystal of Carbamazepine with Marketed Product. J. Pharm. Biopharm. 2007, 67 (1), 112-119.
27. Bethune, S. J.; Schultheiss, N.; Henck, J. O. Improving the Poor Aqueous Solubility of Nutraceutical Compound Pterostilbene through Cocrystal Formation. Cryst. Growth Des. 2011b, 11 (7), 2817-2823.
28. Zhang, J.; Geng, H.; Virk, T. S.; Zhao, Y.; Tan, J.; Di, C.-A.; Xu, W.; Singh, K.; Hu, W.; Shuai, Z.; Liu, Y.; Zhu, D. Sulfur‐Bridged Annulene‐TCNQ Co‐Crystal: A Self‐Assembled ′′Molecular Level Heterojunction′′ with Air Stable Ambipolar Charge Transport Behavior Adv. Mater. 2012, 24 (19), 2603-2607.
29. Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R. Continuous Engineering of Nano-Cocrystals for Medical and Energetic Applications. Sci. Rep. 2014, 4 (6575), 1-6.
30. Urbanus, J.; Roelands, C. P. M.; Verdoes, D.; Jansens, P. J.; ter Horst, J. H. Co-Crystallization as a Separation Technology: Controlling Product Concentrations by Co-Crystals. Cryst. Growth Des. 2010, 10 (3), 1171-1179.
31. Hsi, K. H.-Y.; Chadwick, K.; Fried, A.; Kenny, M.; Myerson, A. S. Separation of Impurities from Solution by Selective Co-Crystal Formation. CrystEngComm. 2012, 14 (7), 2386-2388.
32. Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Continuous Co-Crystallization as a Separation Technology: The Study of 1:2 Co-Crystals of Phenazine-Vanillin. Cryst. Growth Des. 2012, 12 (12), 5897-5907.
33. Chen, S.; Xi, H.; Henry, R. F.; Marsden, I.; Zhang, G. G. Z. Chiral Co-Crystal Solid Solution: Structures, Melting Point Phase Diagram, and Chiral Enrichment of (Ibuprofen) 2 (4, 4-Dipyridyl). CrystEngComm. 2010, 12 (5), 1485-1493.
34. Becheker, I.; Berredjem, H.; Boutefnouchet, N.; Berredjem, M.; Ladjama, A. Antibacterial Activity of Four Sulfonamide Derivatives against Multidrug-Resistant Staphylococcus Aureus. J. Chem. Pharm. Res. 2014, 6 (11), 893-899.
35. Park, S. J.; Yeo, S. D. Antisolvent Crystallization of Sulfa Drugs and the Effect of Process Parameters. Sep. Sci. Technol. 2007, 42 (12), 2645-2660.
36. Kordikowski, A.; Shekunov, T.; York, P. Polymorph Control of Sulfathiazole in Supercritical CO2. Pharm. Res. 2001, 18 (5), 682-688.
37. Bakar, M. R. A.; Nagy, Z. K.; Rielly, C. D.; Dann, S. E. Investigation of the Riddle of Sulfathiazole Polymorphism. Int. J. Pharm. 2011, 414 (1), 86-103.
38. Toscani, S.; Thorén, S; Agafonov, V.; Céolin, R.; Dugué, J. Thermodynamic Study of Sulfanilamide Polymorphism: (I) Monotropy of the α-variety. Pharm. Res. 1995, 12 (10), 1453-1456.
39. Hu, Y.; Gniado, K.; Erxleben, A.; McArdle, P. Mechanochemical Reaction of Sulfathiazole with Carboxylic Acids: Formation of a Cocrystal, a Salt, and Coamorphous Solids. Cryst. Growth Des. 2014, 14 (2), 803-813.
40. Shefter, E.; Sackman, P. Structural Studies on Molecular Complexes V: Crystal Structures of Sulfathiazole-Sulfanilamide and Sulfathiazole-Theophylline Complexes. J. Pharm. Sci. 1971, 60 (2), 282-286.
41. Samanta, R.; Kanaujia, S.; Reddy, C. M. New Co-Crystal and Salt Form of Sulfathiazole with Carboxylic Acid and Amide. J. Chem. Sci. 2014, 126 (5), 1363-1367.
42. Blagden, N.; Davey, R. J.; Lieberman, H. F.; Williams, L.; Payne, R.; Roberts, R.; Rowe, R. Crystal Chemistry and Solvent Effects in Polymorphic Systems Sulfathiazole. J. Chem. Soc. Faraday Trans. 1998, 94 (8), 1035-1044.
43. Blagden, N. Crystal Engineering of Polymorph Appearance: The Case of Sulphathiazole. Powder Technol. 2001, 121 (1), 46-52.
44. Anderson, J. E.; Moore, S.; Tarczynski, F.; Walker, D. Determination of the Onset of Crystallization of N1-2-(Thiazolyl) Sulfanilamide (Sulfathiazole) by UV-Vis and Calorimetry Using an Automated Reaction Platform; Subsequent Characterization of Polymorphic Forms Using Dispersive Raman Spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 2001, 57 (9), 1793-1808.
45. Apperley, D. C., Fletton, R. A., Harris, R. K., Lancaster, R. W., Tavener, S.; Threlfall, T. L. Sulfathiazole Polymorphism Studied by Magic‐Angle Spinning NMR. J. Pharm. Sci. 1999, 88 (12), 1275-1280.
46. Ehiwe, T. O.; Alexander, B. D.; Mitchell, J. C.; Snowden, M. J.; Waters, L. J. (in press) Monitoring Real Time Polymorphic Transformation of Sulfanilamide by Diffuse Reflectance Visible Spectroscopy. J. Pharm. Anal. 2016, DOI: 10.1016/j.jpha.2015.12.002
47. Lin, H. O.; Guillory, J. K. Polymorphism in Sulfanilamide-d4. J. Pharm. Sci. 1970, 59 (7), 972-975.
48. Gelbrich, T.; Bingham, A. L.; Threlfall, T. L.; Hursthouse, M. B. δ-Sulfanilamide. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2008, 64 (4), o205-o207.
49. Cleary Jr., T. F. Process for Preparing Sulfathiazole. U. S. Patent 2592860, April 15, 1952.
50. Aitipamula, S.; Chow, P. S.; Tan, R. B. Trimorphs of a Pharmaceutical Cocrystal Involving Two Active Pharmaceutical Ingredients: Potential Relevance to Combination Drugs. CrystEngComm. 2009, 11 (9), 1823-1827.
51. Jiang, L.; Huang, Y.; Zhang, Q.; He, H., Xu, Y.; Mei, X. Preparation and Solid-State Characterization of Dapsone Drug-Drug Co-Crystals. Cryst. Growth Des. 2014, 14 (9), 4562-4573.
52. Feng, L.; Godtfredsen, E.; Hu, B.; Liu, Y.; Karpinski, P.; Sutton, P. A.; Prashad, M.; Girgis, M. J.; Blacklock, T. J. Compounds Containing S-N-Valeryl-N-{[2’- (1h-Tetrazole-5-Yl)-Biphenyl-4-Yl]-Methyl}-Valin and (2r,4s)-5-Biphenyl-4-Yl-4- (3-Carboxy- Propionylamino)-2-Methyl- Pentanoic Acid Ethyl Ester Moieties and Cations. U. S. Patent 8877938 B2, Nov. 4, 2014.
53. Jiang, L.; Huang, Y.; Zhang, Q.; He, H.; Xu, Y.; Mei, X. Preparation and Solid-State Characterization of Dapsone Drug-Drug Co-crystals. Cryst. Growth Des. 2014, 14 (9), 4562-4573.
54. Grobelny, P.; Mukherjee, A.; Desiraju, G. R. Drug-Drug Co-Crystals: Temperature-Dependent Proton Mobility in the Molecular Complex of Isoniazid with 4-Aminosalicylic Acid. CrystEngComm. 2011, 13 (13), 4358-4364.

Chapter 2.
1. Cleary Jr., T. F. Process for Preparing Sulfathiazole. U. S. Patent 2592860, April 15, 1952.
2. Boyle, J; Otty, S.; Sarojini, V. A Safer and Convenient Synthesis of Sulfathiazole for Undergraduate Organic and Medicinal Chemistry Classes. J. Chem. Educ. 2012, 89 (1), 141-143.
3. Lee, T.; Chen, Y. H.; Zhang, C. W. Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R,S)-(±)-Sodium Ibuprofen Dihydrate. Pharm. Technol. 2007, 31 (6), 72-87.
4. Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.L.; Lee, S. W.; Hu, J. C.; Chen, L. T. Stabilization and Spheroidization of Ammonium Nitrate: Co-crystallization with Crown Ethers and Spherical Crystallization by Solvent Screening. Chem. Eng. J. 2013, 225 (1), 809-817.

Chapter 3.
1. Lu, J.; Rohani, S. Preparation and Characterization of Theophylline-Nicotinamide Cocrystal. Org. Process Res. Dev. 2009, 13 (6), 1269-1275.
2. Friščić, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal
Formation via Grinding. Cryst. Growth Des. 2009, 9 (3), 1621-1637.
3. Takata, N.; Shiraki, K.; Takano, R. Hayashi, Y.; Terada, K. Cocrystal Screening of Stanolone and Mestanolone Using Slurry Crystallization. Cryst. Growth Des. 2008, 8 (8), 3032-3037.
4. Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical
Cocrystals: An Overview. Int. J. Pharm. 2011, 419 (1), 1-11.
5. Aher, S.; Dhumal, R.; Mahadik, K.; Paradkar, A.; York, P. Ultrasound Assisted Cocrystallization from Solution (USSC) Containing a Non-Congruently Soluble Cocrystal Component Pair: Caffeine/Maleic Acid. Eur. J. Pharm. Sci. 2010, 41 (5), 597-602.
6. Lu, E.; Rodríguez-Hornedo, N.; Suryanarayanan, R. Rapid Thermal Method for Cocrystal Screening. CrystEngComm. 2008, 10 (6), 665-668.
7. Alhalaweh, A.; Velaga, S. P.; Formation of Cocrystals from Stoichiometric Solutions of Incongruently Saturating Systems by Spray Drying. Cryst. Growth Des. 2010, 10 (8), 3302-3305.
8. Padrela, L.; Rodrigues, M. A.; Velaga, S. P.; Matos, H. A.; Azevedo, E. G. Formation of Indomethacin-Saccharin Cocrystals Using Supercritical Fluid Technology. Eur. J. Pharm. Sci. 2009, 38 (1), 9-17.
9. Ende, D. J.; Anderson, S. R.; Salan, J. S. Development and Scale-Up of Cocrystals Using Resonant Acoustic Mixing. Org. Process Res. Dev. 2014, 18 (2), 331-341.
10. Blagden, N.; Davey, R. J.; Lieberman, H. F.; Williams, L.; Payne, R.; Rowe R.; Docherty, R. Crystal Chemistry and Solvent Effects in Polymorphic Systems. J. Chem. Soc., Faraday Trans. 1998, 94 (8), 1035-1044.
11. Lee, M. J.; Wang, I. C.; Kim, M. J.; Kim, P.; Song, K. H.; Chun, N. H.; Park, H. G.; Choi, G. J. Controlling the Polymorphism of Carbamazepine-Saccharin Cocrystals Formed during Antisovent Cocrystallization Using Kinetic Parameters. Korean J. Chem. Eng. 2015, 32 (9), 1910-1917.
12. Chemburkar, S. R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry, R.; Spanton, S.; Dziki, W.; Porter, W.; Quick, J.; Bauer, P.; Donaubauer, J.; Narayanan, B. A.; Soldani, M.; Riley, D.; McFarland, K. Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development. Org. Process Res. Dev. 2000, 4 (5), 413-417.
13. Lee, T.; Lin, H. Y.; Lee, H. L. Engineering Reaction and Crystallization and the Impact on Filtration, Drying, and Dissolution Behaviors: the Study of Acetaminophen (Paracetamol) by In-Process Controls. Org. Process Res. Dev. 2013, 17 (9), 1168-1178.
14. Holaň, J.; Ridvan, L.; Billot, P.; Štĕpánek, F. Design of Co-Crystallization Processes with Regard to Particle Size Distribution. Chem. Eng. Sci. 2015, 128, 36-43.
15. Lin, P. Y.; Lee, H. L.; Chen, C. W.; Lee, T. Effects of Baffle Configuration and Tank Size on Spherical Agglomerates of Dimethyl Fumarate in a Common Stirred Tank. Int. J. Pharm. 2015, 495 (2), 886-894.
16. Ståhl, M.; Åslund, B. L.; Rasmuson, Å. C. Reaction Crystallization Kinetics of Benzoic Acid. AlChE J. 2001, 47 (7), 1544-1560.
17. Bose, D. S.; Fatima, L.; Mereyala, H. B. Green Chemistry Approaches to the Synthesis of 5-Alkoxycarbonyl-4-Aryl-3,4- Dihydropyrimidin-2(1H)-Ones by a Three-Component Coupling of One-Pot Condensation Reaction:  Comparison of Ethanol, Water, and Solvent-Free Conditions. J. Org. Chem. 2003, 68 (2), 587-590.
18. Sheldon, R. A. Green Solvents for Sustainable Organic Synthesis: State of the Art. Green Chem. 2005, 7 (5), 267-278.
19. Trost, B. M. On Inventing Reactions for Atom Economy. Acc. Chem. Res. 2002, 35 (9), 695-705.
20. Singh, M. S.; Chowdhury, S. Recent Developments in Solvent-Free Multicomponent Reactions: A Perfect Synergy for Eco-Compatible Organic Synthesis. RSC Adv. 2012, 2 (11), 4547- 4592.
21. Ramachary, D. B.; Jain, S. Sequential One-Pot Combination of Multi-Component and Multi-Catalysis Cascade Reactions: an Emerging Technology in Organic Synthesis. Org. Biomol. Chem. 2011, 9 (5), 1277-1300.
22. Lee, H. L.; Lee, T. Direct Co-Crystal Assembly from Synthesis to Co-Crystallization. CrystEngComm. 2015, 17 (47), 9002-9006.
23. Hsi, K. H.; Chadwick, K.; Fried, A.; Kenny, M.; Myerson, A. S. Separation of Impurities from Solution by Selective Co-Crystal Formation. CrystEngComm. 2012, 14 (7), 2386-2388.
24. Nillot, P.; Hosek, P.; Perrin, M. A. Efficient Purification of an Active Pharmaceutical Ingredient via Cocrystallization: From Thermodynamics to Scale-Up. Org. Process Res. Dev. 2013, 17 (3), 505-511.
25. Caira, M. Sulfa Drugs as Model Cocrystal Formers. Mol. Pharm. 2007, 4 (3), 310-316.
26. Lawton, S.; Steele, G.; Shering, P. Continuous Crystallization of Pharmaceuticals Using a Continuous Oscillatory Baffled Crystallizer. 2009, 13 (6), 1357-1363.
27. Wong, S. T.; Tatusko, A. P.; Trout, B. L.; Myerson, A. S. Development of Continuous Crystallization Processes Using a Single-Stage Mixed-Suspension, Mixed-Product Removal Crystallizer with Recycle. Cryst. Growth Des. 2012, 12 (11), 5701-5707.
28. Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Continuous Co-Crystallization as a Separation Technology: The Study of 1:2 Co-Crystals of Phenazine−Vanillin. Cryst. Growth Des. 2012, 12 (12), 5897-5907.
29. Lai, T.-T. C.; Cornevin, J.; Ferguson, S.; Li, N.; Trout, B. L.; Myerson, A. S. Control of Polymorphism in Continuous Crystallization via Mixed Suspension Mixed Product Removal Systems Cascade Design. Cryst. Growth Des. 2015, 15 (7), 3374-3382.
30. Moradiya, H.; Islam, M. T.; Woollam, G. R.; Slipper, I. J.; Halsey, S.; Snowden, M. J.; Douroumis, D. D. Continuous Cocrystallization for Dissolution Rate Optimization of a Poorly Water-Soluble Drug. Cryst. Growth Des. 2014, 14 (1), 189-198.
31. Shefter, E.; Sackman, P. Structural Studies on Molecular Complexes V: Crystal Structures of Sulfathiazole-Sulfanilamide and Sulfathiazole-Theophylline Complexes. J, Pharm, Sci. 1971, 60 (2), 282-286.
32. Lee, T.; Hung, S. T.; Huo, C. S. Polymorph Farming of Acetaminophen and Sulfathiazole on a Chip. Pharm. Res. 2006, 23 (11), 2542-2555.
33. Anderson, J. E.; Moore, S.; Tarczynski, F.; Walker, D. Determination of the Onset of Crystallization of N1-2-(Thiazolyl)Sulfanilamide (Sulfathiazole) by UV-vis and Calorimetry Using an Automated Reaction Platform; Subsequent Characterization of Polymorphic Forms Using Dispersive Raman Spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 2001, 57 (9), 1793-1808.
34. Bellú, S.; Hure, H.; Trapé, M.; Rizzotto, M.; Sutich, E.; Sigrist, M.; Moreno, V. The Interaction between Mercury (II) and Sulfathiazole. Quim. Nova 2003, 26 (2), 188-192.
35. Varghese, H. T.; Panicker, C. Y.; Anto, P. L. Philip, D. Potential Dependent SERS Profile of Sulfanilamide on Silver Electrode. J. Raman Spectrosc. 2005, 37 (4), 487-491.
36. Lin, H. O.; Guillory, J. K. Polymorphism in Sulfanilamide-d4. J. Pharm, Sci. 1970, 59 (7), 972-975.
37. Lee, T.; Hung, S. T. Cocktail-Solvent Screening to Enhance Solubility, Increase Crystal Yield, and Induce Polymorphs. Pharm. Technol. 2008, 32 (1), 76-95.
38. Munroe, Á.; Rasmuson, Å. C.; Hodnett, B. K.; Croker, D. M. Relative Stabilities of the Five Polymorphs of Sulfathiazole. Cryst. Growth Des. 2012, 12 (6), 2825-2835.
39. Apperley, D. C.; Fletton, R. A.; Harris, R. K.; Lancaster, R. W.; Tavener, S.; Threlfall, T. L. Sulfathiazole Polymorphism Studied by Magic-Angle Spinning NMR. J. Pharm. Sci. 1999, 88 (12), 1275-1280.
40. Blagden, N.; Davey, R. J.; Lieberman, H. F.; Williams, L.; Payne, R.; Roberts, R.; Rowe, R.; Docherty, R. Crystal Chemistry and Solvent Effects in Polymorphic Systems Sulfathiazole. J. Chem. Soc., Faraday Trans. 1998, 94 (8), 1035-1044
41. Toscani, S.; Thorén, S; Agafonov, V.; Céolin, R.; Dugué, J. Thermodynamic Study of Sulfanilamide Polymorphism: (I) Monotropy of the α-Variety. Pharm. Res. 1995, 12 (10), 1453-1456.
42. Ehiwe, T. O.; Alexander, B. D.; Mitchell, J. C.; Snowden, M. J.; Waters, L. J. (in press) Monitoring Real Time Polymorphic Transformation of Sulfanilamide by Diffuse Reflectance Visible Spectroscopy. J. Pharm. Anal. 2016, DOI: 10.1016/j.jpha.2015.12.002
43. Sheridan, A. K.; Anwar, J. Kinetics of the Solid-State Phase Transformation of Form β to γ of Sulfanilamide Using Time-Resolved Energy-Dispersive X-ray Diffraction. Chem. Mater. 1996, 8 (5), 1042-1051.
44. Li, Z. J.; Ojala, W. H.; Grant, D. J. W. Molecular Modeling Study of Chiral Drug Crystals: Lattice Energy Calculations. J. Pharm. Sci. 2001, 90 (10), 1523-1539.
45. Cherukuvada, S.; Nangia A. Fast Dissolving Eutectic Compositions of Two Anti-Tubercular Drugs. CrystEngComm 2012, 14 (7), 2579-2588.
46. Cherukuvada, S.; Row, T. N. G. Comprehending the Formation of Eutectics and Cocrystals in Terms of Design and Their Structural Interrelationships. Cryst. Growth Des. 2014, 14 (8), 4187-4198.
指導教授 李度 審核日期 2016-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明