博碩士論文 103326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.82.50
姓名 廖淑君(Shu-Jun Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 運用單壁奈米碳管與鉍奈米粒子/單壁奈米碳管修飾玻璃碳電極進行鉛之伏安法分析
(Voltammetric determination of lead using single-walled carbon nanotubes and bismuth nanoparticles / single-walled carbon nanotubes composite-modified electrode)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鉍(bismuth, Bi)由於擁有較汞更少的毒性以及對環境更具有友善之特性,近年來被考慮為取代汞電極作為電極材料之一。本研究利用電鍍的方式將鉍電鍍於單壁奈米碳管修飾電極上,並使用單壁奈米碳管修飾電極(SWCNT/GCE)以及鉍/單壁奈米碳管修飾電極(Bi/SWCNT/GCE)搭配線性掃描伏安法進行水中鉛(lead, Pb)之分析。透過參數選擇,最佳電解液為0.1 M醋酸緩衝溶液(ABS),掃描範圍為 -0.8至0伏特,掃描速率為0.2 V/s,最低偵測極限為100 ppb。水中有許多與鉛共存的物質會造成鉛偵測的干擾,因此鄰苯二甲酸氫鉀(KHP)作為水中有機物,另外加入三價鉻、六價鉻與銅於電解液中,並對鉛偵測之干擾現象作探討。當KHP存在於水中,並不會影響Pb的峰電流值。而Cr3+和Cr6+則分別造成Pb的峰電流值下降或上升的情況。由於Cu與Pb競爭碳管上的活性位置會導致Pb的峰電流值下降。本研究使用EDTA降低Cu的干擾,發現EDTA不僅能夠去除Cu的干擾,且會與Pb進行螯合。推測EDTA可用於低Cu濃度的水樣中偵測Pb的存在。
摘要(英) Bi is less toxic than mercury, thus it has been considered as an environmental friendly alternative for mercury-based electrodes. The objective of this paper is to analyze Pb via linear sweep voltammetry (LSV) using single-walled carbon nanotubes (SWCNT/GCE) and bismuth nanoparticle/single-walled carbon nanotubes (Bi/SWNCT/GCE) composite modified glassy carbon electrodes. Bi could be deposited on SWCNT via electroplating. The proper scanning conditions of voltammetry, electrolytes is 0.1 M acetate buffer solution (ABS), scan potential range from -0.8 to 0 V, scan rate is 0.2 V/s, and the detection limit of Pb can achieve 100 ppb. Since there are usually various heavy metal ions and organic matter co-existed in wastewater, the interference, such as potassium hydrogen phthalate (KHP), Cr3+, Cr6+, and Cu2+ would be examined. KHP showed no effects on the Pb peak current. Cr3+ and Cr6+ would decrease and increase the peak current of Pb, respectively. Cu would decrease the Pb peak current for it might compete the active sites of carbon nanotubes. EDTA could be used to eliminate the interference of Cu, but it would also chelates with Pb. It was found that 0.001 mM EDTA can eliminate the interference of Cu, but peak current of Pb might be also decreased to 50%. Thus, EDTA could only be used at low Cu concentration to detect Pb.
關鍵字(中) ★ 鉍
★ 奈米碳管
★ 線性掃描伏安法
★ 鉛
★ 干擾
關鍵字(英) ★ bismuth
★ carbon nanotube
★ linear sweep voltammetry
★ lead
★ interference
論文目次 CONTENT
摘要 I
ABSTRACT II
CONTENT IV
FIGURE CAPTION VII
TABLE LIST X
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Objective 2
CHAPTER II BACKGROUND 4
2.1 Detection method, application, and hazards of lead 4
2.2 Voltammetry 7
2.2.1 Electrochemical system 7
2.2.2 Principle of voltammetry 10
2.3 Carbon nanotubes 20
2.3.1 Basic characteristics of carbon nanotubes. 21
2.3.2 Effects of purification and modification of carbon nanotubes on their electrochemical properties. 29
2.3.3 Analyze application of carbon nanotubes immobilized to electrode surfaced.. 32

2.4 SWCNT/Bi composite material 34
2.4.1 Characteristics of Bi/SWCNT composite material 35
2.4.2 Electrochemical application using Bi composite material 36
CHAPTER III MATERIALS AND METHODS 40
3.1 Preparation of Bi/SWCNT/GCE 40
3.1.1 Purification of carbon nanotubes. 41
3.1.2 Plating of bismuth on SWCNT/GCE 42
3.2 Characterization of SWCNT/GCE and Bi/SWCNT/GCE 43
3.3 Voltammetry analyze 43
CHAPTER IV RESULTS AND DISCUSSION 46
4.1 Characterization of SWCNT/GCE and Bi/SWCNT/GCE 46
4.1.1 TEM images 46
4.1.2 SEM images 50
4.2 Optimization of scanning parameters 52
4.2.1 Selection of electrolyte 53
4.1.2 Determination of Bi concentration 58
4.1.3 Scan rate and limit of detection (LOD) 59
4.3 Interference tests 62
4.3.1 The interference of KHP 62
4.3.2 The interference of Cr3+ 64
4.3.3 The interference of Cr6+ 66
4.3.4 The interference of Cu2+ 67
4.4 EDTA tests 74
4.5 Memory effects and electrode cleaning 78
CHAPTER V CONCLUSION AND SUGGESTIONS 79
5.1 Conclusion 79
5.2 Suggestions 81
REFERENCE 82
APPENDIX 89

參考文獻 Arduini, F., Calvo, J. Q., Palleschi, G., Moscone, D. and Amine, A., "Bismuth-modified electrodes for lead detection", TrAC Trends in Analytical Chemistry, 29, 1295-1304, (2010).
Baldrianova, L., Svancara, I., Vlcek, M., Economou, A. and Sotiropoulos, S., "Effect of Bi(III) concentration on the stripping voltammetric response of in situ bismuth-coated carbon paste and gold electrodes", Electrochimica Acta, 52, 481-490, (2006).
Brad, A. J. and Faulkner, I. R., "Electrochemichal method: fundaments and applications", Wily (New York), (2001).
Brown, P. A. and Anson, C. F., "Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface", Analytical Chemistry, 49, 1589-1595, (1977).
Carla, G. C., Rasa, P. and Christopher, M. A. B., "Influence of Nafion Coatings and Surfactant on the Stripping Voltammetry of Heavy Metals at Bismuth-Film Modified Carbon Film Electrodes", Electroanalysis, 18, 854-861, (2006).
Cerovac, S., Guzsvany, V., Konya, Z., Ashrafi, A. M., Svancara, I., Roncevic, S., Kukovecz, A., Dalmacija, B. and Vytras, K., "Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode", Talanta, 134, 640-9, (2015).
Chamjangali, M. A., Kouhestani, H., Masdarolomoor, F. and Daneshinejad, H., "A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly(pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants", Sensors and Actuators B: Chemical, 216, 384-393, (2015).
Chatterjee, P. K. and SenGupta, A. K., "Interference-free detection of trace copper in the presence of EDTA and other metals using two complementary chelating polymers", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 432-441, (2011).
Chen, H. H. and Huang, J. F., "EDTA assisted highly selective detection of As(3+) on Au nanoparticle modified glassy carbon electrodes: facile in situ electrochemical characterization of Au nanoparticles", Anal Chem, 86, 12406-13, (2014).
Chin, C. J., Shih, M. W. and Tsai, H. J., "Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes", Applied Surface Science, 256, 6035-6039, (2010).
Contreras, M. L., Avila, D., Alvarez, J. and Rozas, R., "Computational algorithms for fast-building 3D carbon nanotube models with defects", J Mol Graph Model, 38, 389-95, (2012).
Dimovasilis, A. P. and Prodromidis, I. M., "Bismuth-dispersed xerogel-based composite films for trace Pb(II) and Cd(II) voltammetric determination", Anal Chim Acta, 769, 49-55, (2013).
Economou, A., "Bismuth-film electrodes: recent developments and potentialities for electroanalysis", TrAC Trends in Analytical Chemistry, 24, 334-340, (2005).
Flora, G., Gupta, D. and Tiwari, A., "Toxicity of lead: A review with recent updates", Interdiscip Toxicol, 5, 47-58, (2012).
Heras, A., Colina, A., Lopez-Palacios, J., Ayala, P., Sainio, J., Ruiz, V. and Kauppinen, E. I., "Electrochemical purification of carbon nanotube electrodes", Electrochemistry Communications, 11, 1535-1538, (2009).
Hoc?evar, S. B., Ogorevc, B., Wang, J. and Pihlar, B., "A Study on Operational Parameters for Advanced Use of Bismuth Film Electrode in Anodic Stripping Voltammetry", Electroanalysis, Vol. 14, 1707-1712, (2002).
Hwang, G. H., Han, W. K., Park, J. S. and Kang, S. G., "Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode", Talanta, 76, 301-8, (2008).
Iijima, S., "Helical microtubules of graphoc carbon", Nature, 354, 56-58, (1991).
Iijima, S. and Ichihashi, T., "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363, 603-605, (1993).
Khan, A. A. A. and Abdulah, M. A., "Bismuth-modified Hydroxyapatite Carbon Electrode for
Simultaneous in-situ Cadmium and Lead Analysis", International journal of electrochemical science, Vol. 8, 195-203, (2013).
Kruusenberg, I., Alexeyeva, N., Tammeveski, K., Kozlova, J., Matisen, L., Sammelselg, V., Solla-Gullon, J. and Feliu, J. M., "Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution", Carbon, 49, 4031-4039, (2011).
Lee, J. and Freeman, J. L., "Zebrafish as a model for investigating developmental lead (Pb) neurotoxicity as a risk factor in adult neurodegenerative disease: a mini-review", Neurotoxicology, 43, 57-64, (2014).
Lee, S., Bong, S., Ha, J., Kwak, M., Park, S. K. and Piao, Y., "Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals", Sensors and Actuators B: Chemical, 215, 62-69, (2015).
Li, J., Guo, S., Zhai, Y. and Wang, E., "High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film", Anal Chim Acta, 649, 196-201, (2009).
Lin, H. M., "奈米碳管合成技術", Department of matetial engineering,
Lovering, T. G., "Lead in the environment", geological survey professional paper 957, 6, (1976).
Luo, L., Wang, X., Ding, Y., Li, Q., Jia, J. and Deng, D., "Voltammetric determination of Pb2+ and Cd2+ with montmorillonite-bismuth-carbon electrodes", Applied Clay Science, 50, 154-157, (2010).
Mandil, A., Pauliukaite, R., Amine, A. and Christopher, M. A. B., "Electrochemical Characterization of and Stripping Voltammetry at Screen Printed Electrodes Modified with Different Brands of Multiwall Carbon Nanotubes and Bismuth Films", Analytical Letters, 45, 395-407, (2012).
Ouyang, R., Zhang, W., Zhou, S., Xue, Z. L., Xu, L., Gu, Y. and Miao, Y., "Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI)", Electrochim Acta, 113, 686-693, (2013).
Pokpas, K., Jahed, N., Tovide, O., Baker, P. G. and Iwuoha, E. I., "Nafion-Graphene Nanocomposite in situ Plated Bismuth-film
Electrodes on Pencil Graphite Substrates for the Determination
of Trace Heavy Metals by Anodic Stripping Voltammetry", International journal of electrochemical science, (2014).
Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K. and Poh, H. L., "Graphene for electrochemical sensing and biosensing", TrAC Trends in Analytical Chemistry, 29, 954-965, (2010).
Salina-Torres, D., Francisco, H., Francisco, M. and Morallon, E., "Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes", Electrochimica Acta, 56, 2464-2470, (2011).
Tao, Y., Gu, X., Pan, Y., Deng, L., Wei, Y., Kong, Y. and Li, W., "Overoxidation of Conducting Polymers Combined with In Situ Plated Bismuth Film: An Approach for Simultaneous Detection of Cadmium and Lead Ions", Journal of the Electrochemical Society, 162, H194-H199, (2015).
Wang, J., "Analytical electrochemistry", Wiley-vch, (2006).
Wang, J., Lu, J., Hocevar, S. B. and Farias, P. A. M., "Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry", Analytical Chemistry, Vol. 72, 3218-3222, (2000).
Wang, J., Lu, J., Hocevar, S. B. and Ogorevc, B., "Bismith-Coated Screen-Printed Electrodes for Stripping Voltammetric Measurements of Trace Lead", Electroanalysis, Vol. 13, 13-16, (2000).
Wang, Y., Du, G., Zhu, L., Liu, H., Wong, C. P. and Wang, J., "Aligned open-ended carbon nanotube membranes for direct electrochemistry applications", Sensors and Actuators B: Chemical, 174, 570-576, (2012).
WHO, "lead in drinking water", Background document for development of WHO Guidelines for Drinking-water Quality, (2011).
Wiber, E. and Wiber, N., "Inorganic Chemistry ", 1152, (2001).
Xu, H., Zeng, L., Xing, S., Xian, Y., Shi, G. and Jin, L., "Ultrasensitive Voltammetric Detection of Trace Lead(II) and Cadmium(II) Using MWCNTs-Nafion/Bismuth Composite Electrodes", Electroanalysis, 20, 2655-2662, (2008).
Yang, D., Wang, L., Chen, Z., Megharaj, M. and Naidu, R., "Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles", Electrochimica Acta, 132, 223-229, (2014).
Yang, D., Wang, L., Chen, Z., Megharaj, M. and Naidu, R., "Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles", Microchimica Acta, 181, 1199-1206, (2014).
Yurdakok, K., "Lead, mercury, and cadmium in breast milk", Journal of Pediatric and Neonatal Individualized Medicine, 4, 1-11, (2015).
王凱平, "奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究", 碩士論文,國立成功大學化學工程學系碩士班,台南, (2005).
成會明, "奈米碳管", 五南圖書出版社,, (2004).
呂至倫, "Glucose sensor based on chitosan assistant gold nanoparticles modified ITO electrode", 碩士論文,國立交通大學, (2009).
林良憲, "利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究", 碩士論文,國立中山大學化學研究所,高雄,, (2010).
林鴻明, "台灣奈米結構材料與技術之研究現況", 化工科技與商情, 32, 26-28, (2002).
洪昭南, 徐逸明 and 王宏達, "奈米碳管結構及特性簡介", 化工,, 第49卷,第一期,, 23-30, (2002).
胡啟章, "電化學原理與方法", 五南圖書出版社, (2011).
格里第 and ?祺振, "電極動力學", 財團法人徐氏基金會, (1996).
郭艷如, "可拋棄式奈米白金碳墨修飾電極電化學偵測之研究", 碩士論文,國立交通大學應用化學系, (2009).
陳成裕, 曾志明 and 石東生, "尿中TTCA電化學偵測技術研究", 行政院勞工委員會勞工安全衛生研究所,台北,, (2002).
曾志明, "效能液相層析儀與電化學感測器靈敏度之研究", 碩士論文, (2000).
曾俊豪, "利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究", 碩士論文,國立成功大學化學工程學系, (2009).
黃喬渝, "單壁奈米碳管修飾電極對硝基酚和銅之電化學分析", 碩士論文,國立中央大學環境工程研究所, 桃園, (2012).
歐陽姍佩, "鹼性溶液中鎳大環錯鹽聚合膜修飾電極對甲醇及苯甲醇之氧化電觸行為研究", 碩士論文,國立台南師範學院自然科學教育學系, 台南, (2004).
鄭人豪, "白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測器之研究", 碩士論文,南台科技大學化學工程研究所,台南,, (2004).
賴炤銘 and 李錫隆, "奈米材料的特殊效應與應用", Chemistry (Taipei), 61, 585-597, (2003).
環保署環境檢驗所, "運用奈米碳管修飾電極進行水質分析(3/4)-重金屬分析電極開發與研究", (2015).
指導教授 秦?如(Ching-Ju Chin) 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明