博碩士論文 103326018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.116.85.111
姓名 陳建安(Jian-An Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2016年鹿林山生質燃燒煙團傳輸氣膠特性解析
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 每年3至4月中南半島北部山區有大規模生質燃燒,燃燒煙團因熱力上升到高層大氣後,受盛行西風傳輸至東亞,影響範圍甚大,當傳輸煙團氣膠與雲層交會,將影響雲內水珠輻射收支,對區域氣候變遷有重大影響。
本研究於2015年8月至2016年4月在台灣鹿林山大氣背景觀測站(海拔2,862 m),以去除前驅酸、鹼性氣體干擾並補償揮發氣膠成分的方法採集分析大氣氣膠化學成分。採樣分成兩個時期,前期為相對乾淨期間,可分成背景(Background, BK)與山谷風(Valley, VALY)期間,後期受中南半島生質燃燒長程傳輸影響(Biomass Burning, BB),可分成受BB及不受BB影響(Non-Biomass-Burning, NBB)期間。在BK期間,PM2.5與PM10質量濃度平均為2.3 ± 1.8 μg m-3和3.5 ± 2.4 μg m-3,可視為東亞高山氣膠背景濃度。在採樣期間氣膠質量濃度是BB>NBB>VALY>BK,氣膠都以細粒徑為主。BB和NBB期間PM2.5水溶性無機離子主要物種為NH4+與SO42-,但BB期間nss-K+及NO3-濃度和占比都較NBB期間增大。
BB期間PM2.5碳成分的主導成分為OC3和EC1-OP,但OC4與K+相關性非常好(R=0.91),有潛力成為生質燃燒指標成分。各碳成分中char-EC/soot-EC比值比OC/EC更能反應受生質燃燒影響。NBB期間PM2.5碳成分的主導成分為OC3和EC2。在BB期間採樣過程中,微粒揮發碳成分以低溫解析出的OC1與OC2為主,濾紙吸附的揮發性有機氣體以OC1濃度最高,PM10吸附的OC1/OC比例為其他粒徑的兩倍以上。由於微粒揮發碳成分沒有分析出OP,根據前述可推論低溫解析出的OC不易產生OP。
摘要(英) Biomass burning (BB) occurs frequently in the mountain area of the northern Indochina from March to April evry year. The produced BB plume is uplifted thermodynamically to high altitude and transported by the prevailing westerly from Indochina to East Asia. As the plume distributes spatially during transport, it will affect solar radiation budget of cloud droplets when mixing with cloud layers to cause a significant effect on regional climate change.
This study collected atmospheric aerosol at Lulin Atmospheric Background Station (2,862 m) in Taiwan by adopting a denuder system to remove interfering precursor gases and correct for aerosol volatilization from August 2015 to April 2016. The sampling campaign split into two parts with the background (BK) and valley wind (VALY) periods in the relatively clean front part and under the influence of long-range BB plume transport and without the influence of BB (NBB) in the rear part. During the BK period, the mass concentrations of PM2.5 and PM10 were 2.3 ± 1.8 μg m-3 and 3.5 ± 2.4 μg m-3, respectively, representing aerosol background concentration in high mountain area of East Asia. Aerosol mass concentrations varied following the order of BB >NBB >VALY >BK and fine particles dominated over all periods. For water-soluble inorganic ions in PM2.5, NH4+ and SO42- were the major components during the BB and NBB periods, while nss-K+ and NO3- ratios were enkanced additionally during the BB period.
As for PM2.5 carbonaceous content, OC3 and EC1-OP were the predominant components and OC4 correlated with K+ excellent well (R=0.91) to become potential BB tracers during the BB period. Among various carbonacous components, the ratio of char-EC/soot-EC was apparently more sensitive to BB than OC/EC. In contrast, OC3 and EC2 were predominant in PM2.5 carbonacous components during the NBB period. Interestingly, during the BB period, low-temperature resolved OC1 and OC2 were the predominant components of volatilized carbonaceous content from the preceeding filter and OC1 concentration was the highest component among the volatilized organic gases adsorbed in the back-up filter. In addition, the adsorbed OC1/OC ratio of PM10 were more than two-folds compared with that of other size intervals. Since no OP was resolved from the volatilized carbonaceous content, it implied from previous findigs that low-temperature resolved OC could hardly produce OP.
關鍵字(中) ★ 鹿林山
★ 生質燃燒
★ 氣團長程傳輸
★ 氣膠化學成分
關鍵字(英) ★ Mt. Lulin
★ biomass burning
★ long-range transport of biomass burning aerosol
★ aerosol chemical composition
論文目次 目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧3
2.1 生質燃燒 3
2.1.1 中南半島近生質燃燒 3
2.1.2 台灣鹿林山生質燃燒長程傳輸影響 5
2.2 生質燃燒氣膠化學特性 6
2.2.1 氣膠碳成分 6
2.2.2 氣膠水溶性無機離子 9
2.2.3 氣膠單醣脫水化合物 10
2.2.4 氣膠二元酸 12
2.2.5 氣膠似腐植質(HULIS) 13
2.3 氣膠中和狀況與結合型態 15
2.4 濾紙採樣的誤差 16
2.4.1 有機碳採樣誤差 16
2.4.2 水溶性無機離子濾紙採樣誤差 18
第三章 研究方法 20
3.1 研究架構 20
3.2 鹿林山空氣品質背景監測站(Lulin Atmospheric Background Station, LABS) 21
3.3.1台灣鹿林山後期觀測期間逆推氣流軌跡線分類 23
3.3.2 台灣鹿林山谷風判斷方法 27
3.3 採樣觀測儀器 29
3.3.1 R&P Model 3500自組式蜂巢式套管化學採樣器 29
3.3.2 高量採樣器 31
3.4 採樣濾紙選擇與前處理程序 32
3.4.1 儀器與濾紙配置 32
3.4.2 濾紙前處理 35
3.4.3 樣本運送與保存 36
3.5 樣本分析方法 37
3.5.1 樣本質量濃度秤重 37
3.5.2 氣膠碳成分分析 38
3.5.3氣膠水溶性無機離子分析 40
3.5.4 氣膠微粒揮發成分補償方法 43
3.5.5 氣膠水可溶有機碳分析 46
3.5.6 氣膠單醣脫水化合物 48
3.5.7 氣膠二元酸分析 50
3.5.8 氣膠腐植質分析 52
3.6 氣膠水溶性離子非海洋來源 55
3.7 判別生質燃燒發生的方法 55
3.7.1 美國太空總署(NASA)自然災害網 56
3.7.2 美國太空總署全球火災監測中心(GFMC) 56
3.7.3 氣流軌跡模式(NOAA HYSPLIT) 56
第四章 結果與討論 58
4.1 2016年台灣鹿林山氣膠化學成分特性 58
4.1.1 PM1、PM2.5與PM10氣膠質量濃度 58
4.1.2 PM2.5氣膠碳成分 60
4.1.3 PM2.5氣膠水溶性無機離子 64
4.1.4 PM2.5氣膠有機物 70
4.2 2016年台灣鹿林山春季PM1、PM2.5與PM10氣膠粒徑特性 76
4.2.1 PM1與PM2.5 後期採樣時期氣膠成分粒徑占比 76
4.2.2 PM1與PM10 後期採樣時期氣膠成分粒徑占比 79
4.3 中南半島生質燃燒煙團氣膠吸附與揮發修正 83
4.3.1 修正吸附及揮發有機物 83
4.3.2 修正揮發水溶性無機離子 89
4.4 鹿林山非中南半島來源生質燃燒事件 96
第五章 結論與建議 100
5.1結論 100
5.2建議 103
第六章 參考文獻 104
附錄一 鹿林山採樣平均成分表 116
附錄二 鹿林山逆推軌跡圖 119
附錄三 口試委員意見回覆 136
參考文獻 Aggarwal, S.G., Kawamura, K., 2008. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long-range atmospheric transport. Journal of Geophysical Research: Atmospheres 113, D14301. doi:10.1029/2007JD009365.
Andreae, M.O., Andreae, T.W., Annegarn, H., Beer, J., Cachier, H., le Canut, P., Elbert, W., Maenhaut, W., Salma, I., Wienhold, F.G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research: Atmospheres 103, 32119-32128.
Bhardwaj, P., Naja, M., Kumar, R., Chandola, H.C., 2016. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environmental Science and Pollution Research 23, 4397-4410.
Bikkina, S., Kawamura, K., Imanishi, K., Boreddy, S.K.R., Nojiri, Y., 2015. Seasonal and longitudinal distributions of atmospheric water-soluble dicarboxylic acids, oxocarboxylic acids, and -dicarbonyls over the North Pacific. Journal of Geophysical Research: Atmospheres 120, 5191-5213.
Bikkina, S., Kawamura, K., Miyazaki, Y., Fu, P.Q., 2014. High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. Geophysical Research Letters 41, 3649-3657.
Cao, J.-J., Xu, B.-Q., He, J.-Q., Liu, X.-Q., Han, Y.-M., Wang, G.-h., Zhu, C.-s., 2009. Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote Mountainous region in western China. Atmospheric Environment 43, 4444-4452.
Cao, J., Lee, S., Chow, J.C., Watson, J.G., Ho, K., Zhang, R., Jin, Z., Shen, Z., Chen, G., Kang, Y., 2007. Spatial and seasonal distributions of carbonaceous aerosols over China. Journal of Geophysical Research: Atmospheres 112, D22S11. doi:10.1029/2006JD008205.
Cao, J., Lee, S., Ho, K., Fung, K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol and Air Quality Research 6, 106-122.
Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., Zhu, C., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Cappiello, A., De Simoni, E., Fiorucci, C., Mangani, F., Palma, P., Trufelli, H., Decesari, S., Facchini, M.C., Fuzzi, S., 2003. Molecular characterization of the water-soluble organic compounds in fogwater by ESIMS/MS. Environmental Science & Technology 37, 1229-1240.
Carlton, A.G., Turpin, B.J., Altieri, K.E., Seitzinger, S., Reff, A., Lim, H.J., Ervens, B., 2007. Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments. Atmospheric Environment 41, 7588-7602.
Chang, D., Song, Y., 2010. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data. Atmospheric Chemistry and Physics 10, 2335-2351.
Chantara, S., Sillapapiromsuk, S., Wiriya, W., 2012. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement. Atmospheric Environment 60, 88-98.
Chen, L.-W.A., Moosmuller, H., Arnott, W.P., Chow, J.C., Watson, J.G., Susott, R.A., Babbitt, R.E., Wold, C.E., Lincoln, E.N., Hao, W.M., 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environmental Science & Technology 41, 4317-4325.
Cheng, F.-Y., Yang, Z.-M., Ou-Yang, C.-F., Ngan, F., 2013. A numerical study of the dependence of long-range transport of CO to a mountain station in Taiwan on synoptic weather patterns during the Southeast Asia biomass-burning season. Atmospheric environment 78, 277-290.
Cheng, Y., Duan, F.-k., He, K.-b., Du, Z.-y., Zheng, M., Ma, Y.-l., 2012. Sampling artifacts of organic and inorganic aerosol: Implications for the speciation measurement of particulate matter. Atmospheric environment 55, 229-233.
Cheng, Y., He, K.-b., 2015. Uncertainties in observational data on organic aerosol: An annual perspective of sampling artifacts in Beijing, China. Environmental Pollution 206, 113-121.
Cheng, Y., Lee, S.C., Ho, K.F., Fung, K., 2010. Positive sampling artifacts in particulate organic carbon measurements in roadside environment. Environmental monitoring and assessment 168, 645-656.
Chow, J.C., Watson, J.G., 2007. Review of measurement methods and compositions for ultrafine particles. Aerosol and Air Quality Research 7, 121-173.
Chow, J.C., Watson, J.G., Chen, L.W.A., Rice, J., Frank, N.H., 2010. Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmospheric Chemistry and Physics. 10, 5223-5239.
Chow, J.C., Watson, J.G., Doraiswamy, P., Chen, L.-W.A., Sodeman, D.A., Lowenthal, D.H., Park, K., Arnott, W.P., Motallebi, N., 2009. Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California. Atmospheric Research 93, 874-887.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Christopher, D.E., Kimberly, E.B., 1996. Survey of fires in Southeast Asia and India during 1987. In: Levine, J. (Ed.), Global Biomass burning, vol. 2. MIT Press, Cambridge, MA, pp., 663-670.
Chuang, M.-T., Chou, C.C.K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., Lee, C.-T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment 78, 72-81.
Chuang, M.-T., Fu, J.S., Lin, N.-H., Lee, C.-T., Gao, Y., Wang, S.-H., Sheu, G.-R., Hsiao, T.-C., Wang, J.-L., Yen, M.-C., 2015. Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment. Atmospheric Environment 112, 294-305.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Engling, G., Chang, S.-Y., Chang, S.-C., Sheu, G.-R., Lin, N.-H., Sopajaree, K., Chang, Y.-J., Hong, G.-J., 2016. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan – Implication of aerosol aging during long-range transport. Atmospheric Environment 137, 101-112.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H., Wu, X.-C., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
de Leeuw, G., Cohen, L., Frohn, L.M., Geernaert, G., Hertel, O., Jensen, B., Jickells, T., Klein, L., Kunz, G.J., Lund, S., 2001. Atmospheric input of nitrogen into the North Sea: ANICE project overview. Continental Shelf Research 21, 2073-2094.
Decesari, S., Facchini, M., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A., Smith, D., 2002. Water soluble organic compounds formed by oxidation of soot. Atmospheric Environment 36, 1827-1832.
Ding, X., Wang, X., Xie, Z., Zhang, Z., Sun, L., 2013. Impacts of Siberian biomass burning on organic aerosols over the North Pacific Ocean and the Arctic: primary and secondary organic tracers. Environmental Science & Technology 47, 3149-3157.
Edgerton, E.S., Hartsell, B.E., Saylor, R.D., Jansen, J.J., Hansen, D.A., Hidy, G.M., 2005. The Southeastern Aerosol Research and Characterization Study: Part II. Filter-based measurements of fine and coarse particulate matter mass and composition. Journal of the Air & Waste Management Association 55, 1527-1542.
El Haddad, I., Marchand, N., Dron, J., Temime-Roussel, B., Quivet, E., Wortham, H., Jaffrezo, J.L., Baduel, C., Voisin, D., Besombes, J.L., 2009. Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France. Atmospheric Environment 43, 6190-6198.
Falkovich, A.H., Graber, E.R., Schkolnik, G., Rudich, Y., Maenhaut, W., Artaxo, P., 2005. Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics 5, 781-797.
Fraser, M.P., Lakshmanan, K., 2000. Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols. Environmental Science & Technology 34, 4560-4564.
Gao, S., Hegg, D.A., Hobbs, P.V., Kirchstetter, T.W., Magi, B.I., Sadilek, M., 2003. Water?soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. Journal of Geophysical Research: Atmospheres 108, 8491. doi:10.1029/2002JD002324.
Gelencser, A., 2005. Carbonaceous aerosol. Springer Science & Business Media.
Griffith, S.M., Huang, X.H., Louie, P.K.K., Yu, J.Z., 2015. Characterizing the thermodynamic and chemical composition factors controlling PM2. 5 nitrate: Insights gained from two years of online measurements in Hong Kong. Atmospheric Environment 122, 864-875.
Han, Y., Cao, J., Chow, J.C., Watson, J.G., An, Z., Jin, Z., Fung, K., Liu, S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC. Chemosphere 69, 569-574.
Han, Y., Cao, J., Lee, S., Ho, K., An, Z., 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi′an, China. Atmospheric Chemistry and Physics 10, 595-607.
Han, Y., Lee, S., Cao, J., Ho, K., An, Z., 2009. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment 43, 6066-6073.
Han, Y., Marlon, J., Cao, J., Jin, Z., An, Z., 2012. Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China. Global Biogeochemical Cycles 26, GB4017. doi:10.1029/2011GB004197.
Hennigan, C.J., Sullivan, A.P., Collett, J.L., Robinson, A.L., 2010. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters 37, L09806. doi:10.1029/2010GL043088.
Hoffmann, D., Tilgner, A., Iinuma, Y., Herrmann, H., 2010. Atmospheric Stability of Levoglucosan: A Detailed Laboratory and Modeling Study. Environmental Science & Technology 44, 694-699.
Hoffmann, T., Odum, J.R., Bowman, F., Collins, D., Klockow, D., Flagan, R.C., Seinfeld, J.H., 1997. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. Journal of Atmospheric Chemistry 26, 189-222.
Holmes, B.J., Petrucci, G.A., 2007. Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols. Journal of Atmospheric Chemistry 58, 151-166.
Jain, N., 2014. Emission of Air Pollutants from Crop Residue Burning in India. Aerosol and Air Quality Research 14, 422-430.
Jonson, J., Semb, A., Barrett, K., Grini, A., Tarrason, L., 2000. On the distribution of sea salt and sodium nitrate particles in Europe. Transport and chemical transportation in the troposphere, Proceedings of the EUROTRAC Symposium, Sixth, Gaimisch-Partenkirchen, Germany, pp. 27-31.
Kawamura, K., Bikkina, S., 2016. A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmospheric Research 170, 140-160.
Kawamura, K., Tachibana, E., Okuzawa, K., Aggarwal, S.G., Kanaya, Y., Wang, Z.F., 2013. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season. Atmospheric Chemistry and Physics 13, 8285-8302.
Khamkaew, C., Chantara, S., Janta, R., Pani, S.K., Prapamontol, T., Kawichai, S., Wiriya, W., Lin, N.-H., 2016. Investigation of Biomass Burning Chemical Components over Northern Southeast Asia during 7-SEAS/BASELInE 2014 Campaign. Aerosol and Air Quality Research 16, 2655-2670.
Kim, K.H., Sekiguchi, K., Kudo, S., Sakamoto, K., 2011. Characteristics of Atmospheric Elemental Carbon(Char and Soot) in Ultrafine and Fine Particles in a Roadside Environment, Japan. Aerosol and Air Quality Resarch 11, 1-12.
Kiss, G., Varga, B., Galambos, I., Ganszky, I., 2002. Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. Journal of Geophysical Research: Atmospheres 107, 8339. doi:10.1029/2001JD000603.
Koutrakis, P., Sioutas, C., Ferguson, S., Wolfson, J., Mulik, J.D., Burton, R.M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental Science & Technology 27, 2497-2501.
Krivacsy, Z., Hoffer, A., Sarvari, Z., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment 35, 6231-6244.
Kumar, S., Raman, R.S., 2016. Inorganic ions in ambient fine particles over a National Park in central India: Seasonality, dependencies between SO42?, NO3?, and NH4+, and neutralization of aerosol acidity. Atmospheric Environment 143, 152-163.
Kundu, S., Kawamura, K., Andreae, T., Hoffer, A., Andreae, M., 2010. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmospheric Chemistry and Physics 10, 2209-2225.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, J.Y., Hildemann, L.M., 2014. Surface tensions of solutions containing dicarboxylic acid mixtures. Atmospheric environment 89, 260-267.
Lin, C.-Y., Zhao, C., Liu, X., Lin, N.-H., Chen, W.-N., 2014. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B: Chemical and Physical Meteorology 66. doi: 10.3402/tellusb.v66.23733.
Lin, L.-F., Lee, W.-J., Li, H.-W., Wang, M.-S., Chang-Chien, G.-P., 2007. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 68, 1642-1649.
Lin, N.-H., Tsay, S.-C., Maring, H.B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K.H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J.S., Reid, J.S., Lee, C.-T., Wang, L.-C., Wang, J.-L., Hsu, C.N., Sayer, A.M., Holben, B.N., Chu, Y.-C., Nguyen, X.A., Sopajaree, K., Chen, S.-J., Cheng, M.-T., Tsuang, B.-J., Tsai, C.-J., Peng, C.-M., Schnell, R.C., Conway, T., Chang, C.-T., Lin, K.-S., Tsai, Y.I., Lee, W.-J., Chang, S.-C., Liu, J.-J., Chiang, W.-L., Huang, S.-J., Lin, T.-H., Liu, G.-R., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78, 1-19.
Lin, P., Huang, X.-F., He, L.-Y., Yu, J.Z., 2010. Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. Journal of Aerosol Science 41, 74-87.
Liu, W., Wang, Y., Russell, A., Edgerton, E.S., 2006. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmospheric Environment 40, 445-466.
Ma, J., Li, X., Gu, P., Dallmann, T.R., Presto, A.A., Donahue, N.M., 2016. Estimating ambient particulate organic carbon concentrations and partitioning using thermal optical measurements and the volatility basis set. Aerosol Science and Technology 50, 638-651.
Mayol?Bracero, O., Guyon, P., Graham, B., Roberts, G., Andreae, M., Decesari, S., Facchini, M., Fuzzi, S., Artaxo, P., 2002. Water?soluble organic compounds in biomass burning aerosols over amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. Journal of Geophysical Research: Atmospheres 107, 8091. doi:10.1029/2001JD000522.
Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1991. BIOLOGICAL INPUT TO VISIBILITY-REDUCING AEROSOL-PARTICLES IN THE REMOTE ARID SOUTHWESTERN UNITED-STATES. Environmental Science & Technology 25, 684-694.
Mwaniki, G.R., Rosenkrance, C., Wallace, H.W., Jobson, B.T., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R., VanReken, T.M., 2014. Factors contributing to elevated concentrations of PM2. 5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
Niemi, J.V., Tervahattu, H., Vehkamaki, H., Kulmala, M., Koskentalo, T., Sillanpaa, M., Rantamaki, M., 2004. Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment 38, 5003-5012.
Noziere, B., Baduel, C., Jaffrezo, J.-L., 2014. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation. Nature Communications 5.
Otto, A., Gondokusumo, R., Simpson, M.J., 2006. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Applied Geochemistry. 21, 166-183.
Panyakapo, M., Onchang, R., 2008. A four-year investigation on wet deposition in western Thailand. Journal of Environmental Sciences. 20, 441-448.
Pathak, R.K., Chan, C.K., 2005. Inter-particle and gas-particle interactions in sampling artifacts of PM 2.5 in filter-based samplers. Atmospheric Environment 39, 1597-1607.
Pathak, R.K., Louie, P.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965-2974.
Pathak, R.K., Wang, T., Ho, K.F., Lee, S.C., 2011. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmospheric Environment 45, 318-325.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pavuluri, C.M., Kawamura, K., Mihalopoulos, N., Swaminathan, T., 2015. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls. Atmospheric Chemistry and Physics 15, 7999-8012.
Pio, C., Cerqueira, M., Harrison, R.M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., Sanchez de la Campa, A., Artinano, B., Matos, M., 2011. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment 45, 6121-6132.
Pio, C., Legrand, M., Alves, C., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencser, A., 2008a. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Pio, C.A., Legrand, M., Alves, C.A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencser, A., 2008b. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Ram, K., Sarin, M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Ram, K., Sarin, M., Tripathi, S., 2012. Temporal trends in atmospheric PM2. 5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. Environmental Science & Technology 46, 686-695.
Ram, K., Sarin, M.M., 2010. Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. Journal of Aerosol Science 41, 88-98.
Rastogi, N., Singh, A., Sarin, M.M., Singh, D., 2016. Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions. Atmospheric Environment 125, 396-403.
Ray, J., McDow, S.R., 2005. Dicarboxylic acid concentration trends and sampling artifacts. Atmospheric Environment 39, 7906-7919.
Salma, I., Ocskay, R., Varga, I., Maenhaut, W., 2006. Surface tension of atmospheric humic?like substances in connection with relaxation, dilution, and solution pH. Journal of Geophysical Research: Atmospheres 111, D23205. doi:10.1029/2005JD007015
Sarigiannis, D.Α., Karakitsios, S.P., Kermenidou, M.V., 2015. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Science of The Total Environment 524–525, 319-330.
Shafizadeh, F., Furneaux, R.H., Cochran, T.G., Scholl, J.P., Sakai, Y., 1979. Production of levoglucosan and glucose from pyrolysis of cellulosic materials. Journal of Applied Polymer Science 23, 3525-3539.
Sihabut, T., Ray, J., Northcross, A., McDow, S.R., 2005. Sampling artifact estimates for alkanes, hopanes, and aliphatic carboxylic acids. Atmospheric Environment 39, 6945-6956.
Sillanpaa, M., Saarikoski, S., Hillamo, R., Pennanen, A., Makkonen, U., Spolnik, Z., Van Grieken, R., Koskentalo, T., Salonen, R.O., 2005. Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Science of The Total Environment 350, 119-135.
Sillapapiromsuk, S., Chantara, S., Tengjaroenkul, U., Prasitwattanaseree, S., Prapamontol, T., 2013. Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions. Chemosphere 93, 1912-1919.
Simoneit, B.R.T., 2002. Biomass burning - A review of organic tracers for smoke from incomplete combustion. Applied Geochemistry. 17, 129-162.
Simoneit, B.R.T., Oros, D.R., Elias, V.O., 2000a. Molecular tracers for smoke from charring/burning of chitin biopolymer. Chemosphere: Global Change Science, 2, 101-105.
Simoneit, B.R.T., Rogge, W.F., Lang, Q., Jaff?, R., 2000b. Molecular haracterization of smoke from campfire burning of pine wood (Pinuselliottii). Chemosphere:Global Change Science 2, 107-122.
Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment 33, 172-182.
Sioutas, C., Wang, P., Ferguson, S., Koutrakis, P., Mulik, J.D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA′S HYSPLIT ATMOSPHERIC TRANSPORT AND DISPERSION MODELING SYSTEM. Bulletin of the American Meteorological Society 96, 2059-2077.
Steinfeld, J.I., 1998. Atmospheric chemistry and physics: from air pollution to climate change. Environment: Science and Policy for Sustainable Development 40, 26-26.
Stohl, A., Berg, T., Burkhart, J.F., Fjaeraa, A.M., Forster, C., Herber, A., Hov, O., Lunder, C., McMillan, W.W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Strom, J., Torseth, K., Treffeisen, R., Virkkunen, K., Yttri, K.E., 2007. Arctic smoke - record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics 7, 511-534.
Streets, D., Yarber, K., Woo, J.H., Carmichael, G., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17,1099. doi:10.1029/2003GB002040
Tsai, F., Tu, J.-Y., Hsu, S.-C., Chen, W.-N., 2014. Case study of the Asian dust and pollutant event in spring 2006: Source, transport, and contribution to Taiwan. Science of The Total Environment 478, 163-174.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22, 1649-1656.
Wang, Q., Shao, M., Liu, Y., William, K., Paul, G., Li, X., Liu, Y., Lu, S., 2007. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmospheric Environment 41, 8380-8390.
Wang, Y., Zhang, Q., He, K., Zhang, Q., Chai, L., 2013. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmospheric Chemistry and Physics 13, 2635-2652.
Watson, J.G., Chow, J.C., Chen, L.-W.A., Frank, N.H., 2009. Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks. Journal of the Air & Waste Management Association 59, 898-911.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM 2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Wei, L., Duan, J., Tan, J., Ma, Y., He, K., Wang, S., Huang, X., Zhang, Y., 2015. Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing. Science China Earth Sciences 58, 345-355.
Yadav, I.C., Linthoingambi Devi, N., Li, J., Syed, J.H., Zhang, G., Watanabe, H., 2017. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review. Environmental Pollution 227, 414-427.
Yang, C.-F.O., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Yang, L., Nguyen, D.M., Jia, S., Reid, J.S., Yu, L.E., 2013. Impacts of biomass burning smoke on the distributions and concentrations of C2–C5 dicarboxylic acids and dicarboxylates in a tropical urban environment. Atmospheric Environment 78, 211-218.
Ye, X., Ma, Z., Zhang, J., Du, H., Chen, J., Chen, H., Yang, X., Gao, W., Geng, F., 2011. Important role of ammonia on haze formation in Shanghai. Environmental Research Letters 6, 024019.
Yu, J.Z., Xu, J., Yang, H., 2002. Charring characteristics of atmospheric organic particulate matter in thermal analysis. Environmental Science & Technology 36, 754-761.
Zhang, Y.G., Xu, J.Z., Shi, J.S., Xie, C.H., Ge, X.L., Wang, J.F., Kang, S.C., Zhang, Q., 2017. Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan Plateau. Environmental Science and Pollution Research 24, 21386-21397.
Zheng, G., Duan, F., Su, H., Ma, Y., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., 2015. Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics 15, 2969-2983.
Zhu, C.-S., Chen, C.-C., Cao, J.-J., Tsai, C.-J., Chou, C.C.-K., Liu, S.-C., Roam, G.-D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673.
Zhu, C., Kawamura, K., Kunwar, B., 2015. Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmospheric Chemistry and Physics 15, 1959-1973.
Zhu, C.S., Tsai, C.J., Chen, S.C., Cao, J.J., Roam, G.D., 2012. Positive sampling artifacts of organic carbon fractions for fine particles and nanoparticles in a tunnel environment. Atmospheric Environment 54, 225-230.
余政哲, 2010. 鹿林山大氣氣膠含水量探討及乾氣膠光學特性. 國立中央大學環境工程研究所碩士論文.
侯雅馨, 2008. 大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究. 國立中央大學環境工程研究所碩士論文.
洪國鈞, 2014. 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析. 國立中央大學環境工程研究所碩士論文.
莊仲霆, 2016. 2015年中南半島近生質燃燒源與煙團傳輸氣膠特性解析. 國立中央大學環境工程研究所碩士論文.
許家綺, 2015. 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響. 國立中央大學環境工程研究所碩士論文
陳威任, 2018. 2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣膠水溶性無機離子短時間動態變化. 國立中央大學環境工程研究所碩士論文
陳聖中, 2012. 台灣都市地區細懸浮微粒 (PM2.5) 手動採樣分析探討. 國立中央大學環境工程研究所碩士論文.
指導教授 李崇德(Chung-Te Lee) 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明