博碩士論文 103326024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.236.100.210
姓名 陳姿蒨(Zih-Chien Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以游離酵素促進土壤中氯酚化合物偶合反應之研究
(Oxidative coupling of chlorophenols catalyzed by isolated enzymes)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氯酚化合物具頑抗、難分解之特性,常見處理方式有物理、化學、生物等,利用酵素去除氯酚被認為對環境較為友善。本研究藉由添加酵素至受氯酚污染土壤中,將小分子具毒性之氯酚化合物偶合成分子量大且特性穩定之產物。選取市售Peroxidase及Laccase分別與氯酚於水溶液及土壤中進行催化偶合反應,探討酵素活性、外在環境因子與反應時間對氯酚化合物去除之影響,並鑑定偶合產物及其相對產量。
研究結果發現以相同酵素活性催化偶合反應後,當土壤有機質含量越高時,土壤中氯酚剩餘濃度由高至低為:紗帽山>彰化表土>台中土>林口土。土壤含水率越高,對酵素催化偶合氯酚化合物有明顯助益。酵素催化土壤中氯酚化合物,所產生之偶合產物不盡相同,利用Laccase分別與含2,4-二氯酚及2,4,6-三氯酚之台中、紗帽山土反應所產生之偶合產物分子量皆為339.1(m/z),但因土壤中複雜之有機、無機質交互作用而使偶合產物相對產量與添加酵素活性並無相關趨勢,但其隨催化反應時間增長,氯酚濃度下降並伴隨偶合產物產生。
Peroxidase及Laccase催化氯酚化合物,可去除氯酚並同時產生偶合產物。添加不同酵素催化氯酚化合物時會產生多種不同之偶合產物,於酵素催化2,3,4,5-四氯酚及五氯酚水溶液會產生七種偶合產物。Peroxidase去除氯酚化合物之效率較Laccase高,酵素催化偶合同種氯酚化合物,在土壤所產生之偶合產物分子量不同於氯酚水溶液。
摘要(英) Chlorophenols (CPs) pollution of the soil has become a major concern. The pollution of soil has been treated using physical and chemical processes that have proven to be much more expensive. By changing the traditional methodology, biodegradation has been used as a new methodology in which enzymes are used (peroxidase and laccase) to promote oxidative-coupling reaction between recalcitrant organic pollutants (e.g. 2,4-DCP, 2,4,6-TCP, 2,3,4,5-TeCP, PCP) and soil organic matter (SOM), which produce stable incorporated polymers.
In this study, the soils from Shamao Mountain, Changhua topsoil, Linkou and Taichung were collected and studied. The soil organic matter (SOMs) was determined. The SOMs and reaction time will affect enzyme activity in the environment. 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and catalyzing in aqueous medium are the optimizations to find the best activity reaction conditions with enzyme. Dissociated enzymes on the oxidative-coupling reaction in the difference phase (water and soil) will be discussed. The presence of microorganisms and organic matter in the soil as a coupling product , can promote the coupling reaction. The chlorine monomer (CPs in the soil) can be transfered into dimers, trimers of macromolecular products, which are stable incorporated polymer.When the content of organic matter is higher, the residual concentration of chlorophenols are also higher. Additionally, the moisture(%) of soil favors for oxidative-coupling reaction, and the effect of removal of chlorophenol is as follows; 100%>60%>30%. Relative quantitiy of coupling products is different in sterilization and unsterilization. When samples 2,4-DCP and 2,4,6-TCP of Taichung.; Shamao Mountain are catalyzed by laccase, their products which molecular weight were the same (339.1m/z). The oxidative-coupling reaction in soil is complicated so the trends can’t be correlated. Taking advantage of enough activity, enzyme can reduce chlorophenols and produce lots of coupling products in the same time. The effect of catalysts to chlorophenols is observed as that peroxidase showed better activity than laccase. Moerover, if numbers of chlorine in chlorophenols is higher, it will be more difficulty to remove.
關鍵字(中) ★ Peroxidase
★ Laccase
★ 氯酚化合物
★ 催化偶合
關鍵字(英) ★ Peroxidase
★ Laccase
★ chlorophenols
★ oxidative-coupling
論文目次 目錄  I
圖目錄 V
表目錄 XIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的及內容 2
第二章 文獻回顧 4
2-1 土壤基本性質及作用機制 4
2-1-1 土壤有機質 4
2-1-2 腐植質之形成機制  5
2-1-3 土壤中影響有機污染物傳輸之因子 7
2-2 氯酚類化合物介紹 12
2-2-1 氯酚化合物之來源、性質及特性 12
2-2-2 國內氯酚化合物相關管制法規 14
2-2-3 氯酚化合物之毒性及危害 15
2-2-4 土壤中氯酚化合物之處理技術 15
2-2-5 水中氯酚化合物之處理技術 17
2-3 酵素(Enzyme) 21
2-3-1 特性與種類 22
2-3-2 Laccase 24
2-3-3 Peroxidase 26
2-3-4 影響土壤/地下水微生物胞外酵素活性之環境因子 27
2-3-5 酵素之應用 30
2-3-6 酵素在環工上的應用 31
2-4 偶合反應(oxidative-coupling) 32
2-4-1 傅里德-克拉夫茨反應(Friedel-Crafts reaction) 33
2-4-2 酵素於偶合作用扮演之角色 33
2-4-3 酵素於酚類偶合作用過程中可能之機制 35
第三章 實驗方法 39
3-1 實驗內容 39
3-2 實驗設備與儀器 41
3-3 實驗材料 48
3-3-1 土壤 48
3-3-2 溶劑 48
3-3-3 氯酚標準品 50
3-3-4 酵素 52
3-3-5 其他 52
3-4 實驗方法 54
3-4-1 土壤選擇 54
3-4-2 土壤性質分析與調整 56
3-4-3 酵素活性分析 60
3-4-4 不同時間酵素對氯酚水溶液催化反應之影響 61
3-4-5 不同酵素活性對氯酚水溶液催化反應之影響 61
3-4-6 不同時間酵素對氯酚土壤催化反應之影響 62
3-4-7 不同酵素活性對氯酚土壤催化反應之影響 62
第四章 結果與討論 63
4-1 氯酚水溶液之催化實驗 63
4-1-1 溶劑影響酵素活性之測試 63
4-1-2 Laccase氧化還原電位之測試 64
4-1-3 不同時間酵素對氯酚之偶合反應 65
4-1-4 不同酵素活性對氯酚去除之影響 70
4-1-5 LC-MS鑑定偶合產物 74
4-1-6 不同時間酵素對氯酚水溶液之偶合反應 81
4-1-7 不同酵素活性對氯酚水溶液之偶合反應 84
4-2 酵素催化偶合土壤中氯酚之前置實驗 88
4-2-1 索式萃取土壤中氯酚回收率之測定 88
4-2-2 土壤中氯酚於自然環境中之揮發試驗 90
4-3 不同條件下酵素催化土壤中氯酚之反應 95
4-3-1 不同時間酵素對氯酚土壤催化之影響 95
4-3-2 土壤含水率對酵素催化氯酚之影響 107
4-3-3 不同酵素活性對氯酚土壤催化反應之影響 111
4-3-4 土壤有機質含量對酵素催化之影響 118
4-4 酵素催化氯酚土壤偶合反應之產物 121
4-4-1 不同時間酵素對氯酚土壤偶合產物之影響 124
4-4-2 不同酵素活性對氯酚土壤偶合產物之影響 130
4-4-3 不同土壤含水率下酵素對氯酚土壤偶合產物之影響 136
4-4-4 不同土壤有機質含量對酵素偶合氯酚土壤之影響 137
4-4-5 LC-MS鑑定偶合產物 140

第五章 結論與建議 152
5-1 結論 152
5-2 建議 153
參考文獻 155
圖目錄
圖2-1 腐植質之有機質分解及形成  6
圖2-2 Laccase之可能反應機制示意圖  25
圖2-3 Laccase與基質ABTS催化反應圖  25
圖2-4 Peroxidase之反應示意圖 26
圖2-5 受質濃度與反應速率之關係圖 28
圖2-6 傅-克反應:(1)傅-克烷基化:(2)傅-克醯基化反應 33
圖2-7 Laccase催化酚類氫氧基示意圖 34
圖2-8 Peroxidase催化酚類氫氧基示意圖 34
圖2-9 苯酚類C-O鍵及C-C鍵偶合可能之反應機制圖  36
圖2-10 苯酚類C-O鍵偶合可能之反應機制圖 37
圖2-11 酵素催化氧化2,4-dichlorophenol生成自由基偶合可能之反應機制圖 38
圖3-1 研究流程圖 40
圖3-2 索式萃取裝置圖 45
圖3-3 減壓濃縮裝置圖 46
圖3-4 氮氣吹除裝置圖 47
圖3-5 丙酮結構圖 49
圖3-6 甲醇結構圖 49
圖3-7 2,4-二氯酚結構圖 50
圖3-8 2,4,6-三氯酚結構圖 50
圖3-9 2,3,4,5-四氯酚結 51
圖3-10 五氯酚結構圖 51
圖3-11 ABTS結構圖 52
圖3-12 氯酚污染土壤製備流程圖 59
圖3-13 酵素活性測試流程圖 60
圖3-14 不同活性酵素催化氯酚水溶液實驗流程 61
圖3-15 酵素催化氯酚污染土壤實驗流程 62
圖4-1 酵素於不同溶劑中之相對活性 63
圖4-2 不同ABTS添加量對五氯酚偶合反應之影響 64
圖4-3 Laccase偶合2,3,4,5-四氯酚產物液相層析儀圖譜 65
圖4-4 Peroxidase偶合2,3,4,5-四氯酚產物液相層析儀圖譜 66
圖4-5 Laccase偶合五氯酚產物液相層析儀圖譜 66
圖4-6 Peroxidase偶合五氯酚產物液相層析儀圖譜 66
圖4-7 Peroxidase隨不同時間催化2,3,4,5-四氯酚偶合曲線 68
圖4-8 Laccase隨不同時間催化2,3,4,5-四氯酚偶合曲線 69
圖4-9 Peroxidase隨不同時間催化五氯酚偶合曲線 69
圖4-10 Laccase隨不同時間催化五氯酚偶合曲線 70
圖4-11 不同活性Peroxidase催化2,3,4,5-四氯酚水溶液偶合曲線(反應5分鐘) 71
圖4-12 不同活性Peroxidase催化2,3,4,5-四氯酚水溶液偶合曲線(反應1小時) 71
圖4-13 不同活性Laccase催化2,3,4,5-四氯酚水溶液偶合曲線(反應1小時) 72
圖4-14 不同活性Laccase催化2,3,4,5-四氯酚水溶液偶合曲線(反應24小時) 72
圖4-15 不同活性Peroxidase催化五氯酚水溶液偶合曲線(反應5分鐘) 73
圖4-16 不同活性Laccase催化五氯酚水溶液偶合曲線(反應1小時) 73
圖4-17 2,3,4,5-四氯酚水溶液質譜圖 74
圖4-18 2,3,4,5-四氯酚水溶液MS圖 75
圖4-19 Peroxidase催化2,3,4,5-四氯酚水溶液偶合產物質譜圖 75
圖4-20 1 U/ml Peroxidase催化2,3,4,5-四氯酚水溶液 D偶合產物MS圖 76
圖4-21 1 U/ml Peroxidase催化2,3,4,5-四氯酚水溶液E偶合產物MS圖 76
圖4-22 6 U/ml Peroxidase催化2,3,4,5-四氯酚水溶液D偶合產物MS圖 77
圖4-23 6 U/ml Peroxidase催化2,3,4,5-四氯酚水溶液E偶合產物MS圖 77
圖4-24 6 U/ml Peroxidase催化2,3,4,5-四氯酚水溶液F偶合產物MS圖 78
圖4-25 Laccase催化2,3,4,5-四氯酚水溶液偶合產物質譜圖 79
圖4-26 6 U/ml Laccase催化2,3,4,5-四氯酚水溶液A偶合產物MS圖 79
圖4-27 6 U/ml Laccase催化2,3,4,5-四氯酚水溶液B偶合產物MS圖 79
圖4-28 6 U/ml Laccase催化2,3,4,5-四氯酚水溶液C偶合產物MS圖 80
圖4-29 1 U/ml Peroxidase催化五氯酚水溶液G偶合產物MS圖 80
圖4-30 1 U/ml Laccase催化五氯酚水溶液H偶合產物MS圖 81
圖4-31 Peroxidase催化2,3,4,5-四氯酚水溶液偶合產物相對產量趨勢圖 82
圖4-32 Laccase催化2,3,4,5-四氯酚水溶液偶合產物相對產量趨勢圖 82
圖4-33 Peroxidase催化五氯酚水溶液偶合產物相對產量趨勢圖 83
圖4-34 Laccase催化五氯酚水溶液偶合產物相對產量趨勢圖 83
圖4-35 Peroxidase催化2,3,4,5-四氯酚水溶液偶合產物相對產量趨勢圖(反應5分鐘) 85
圖4-36 Peroxidase催化2,3,4,5-四氯酚水溶液偶合產物相對產量趨勢圖(反應60分鐘) 85
圖4-37 Laccase催化2,3,4,5-四氯酚水溶液偶合產物相對產量趨勢圖(反應1小時) 86
圖4-38 Laccase催化2,3,4,5-四氯酚水溶液偶合產物相對產量趨勢圖(反應24小時) 86
圖4-39 Peroxidase催化五氯酚水溶液偶合產物相對產量趨勢圖(反應5分鐘) 87
圖4-40 Laccase催化五氯酚水溶液偶合產物相對產量趨勢圖(反應60分鐘) 88
圖4-41 未滅菌土壤置於加蓋血清瓶中於不同時間之2,4-二氯酚剩餘濃度 91
圖4-42 未滅菌土壤置於燒杯中於不同時間之2,4-二氯酚剩餘濃度 91
圖4-43 滅菌土壤置於加蓋血清瓶中於不同時間之2,4-二氯酚剩餘濃度 92
圖4-44 滅菌土壤置於燒杯中於不同時間之2,4-二氯酚剩餘濃度 92
圖4-45 未滅菌土壤置於加蓋血清瓶中於不同時間之2,4,6-三氯酚剩餘濃度 93
圖4-46 未滅菌土壤置於燒杯中於不同時間之2,4,6-三氯酚剩餘濃度 93
圖4-47 滅菌土壤置於加蓋血清瓶中於不同時間之2,4,6-三氯酚剩餘濃度 94
圖4-48 滅菌土壤置於燒杯中於不同時間之2,4,6-三氯酚剩餘濃度 94
圖4-49 Peroxidase催化紗帽山2,4-二氯酚污染土壤偶合曲線 95
圖4-50 Peroxidase催化紗帽山2,4,6-三氯酚污染土壤偶合曲線 96
圖4-51 Peroxidase催化紗帽山2,3,4,5-四氯酚污染土壤偶合曲線 97
圖4-52 Peroxidase催化紗帽山五氯酚污染土壤偶合曲線 97
圖4-53 Laccase催化紗帽山2,4-二氯酚污染土壤偶合曲線 99
圖4-54 Laccase催化紗帽山2,4,6-三氯酚污染土壤偶合曲線 99
圖4-55 Laccase催化紗帽山土中2,3,4,5-四氯酚偶合曲線 100
圖4-56 Laccase催化紗帽山土中五氯酚污染土壤偶合曲線 100
圖4-57 Peroxidase催化台中土中2,4-二氯酚偶合曲線 102
圖4-58 Peroxidase催化台中土中2,4,6-三氯酚偶合曲線 102
圖4-59 Peroxidase催化台中土中2,3,4,5-四氯酚偶合曲線 103
圖4-60 Peroxidase催化台中土中五氯酚偶合曲線 103
圖4-61 Laccase催化台中土中2,4-二氯酚偶合曲線 104
圖4-62 Laccase催化台中土中2,4,6-三氯酚偶合曲線 105
圖4-63 Laccase催化台中土中2,3,4,5-四氯酚偶合曲線 105
圖4-64 Laccase催化台中土中五氯酚偶合曲線 106
圖4-65 Peroxidase催化滅菌台中土中2,4 -二氯酚偶合曲線(50ppm) 108
圖4-66 Peroxidase催化未滅菌台中土中2,4 -二氯酚偶合曲線(50ppm) 108
圖4-67 Peroxidase催化滅菌台中土中2,4,6-三氯酚偶合曲線(50ppm) 109
圖4-68 Peroxidase催化未滅菌台中土中2,4,6-三氯酚偶合曲線(50ppm) 110
圖4-69 Peroxidase催化滅菌紗帽山土中2,4 –二氯酚剩餘濃度柱狀圖 112
圖4-70 Peroxidase催化滅菌紗帽山土中2,4,6 -三氯酚剩餘濃度柱狀圖 112
圖4-71 Laccase催化滅菌紗帽山土中2,4 –二氯酚剩餘濃度柱狀圖 113
圖4-72 Laccase催化滅菌紗帽山土中2,4,6 -三氯酚剩餘濃度柱狀圖 113
圖4-73 Peroxidase催化紗帽山土中2,4 –二氯酚剩餘濃度柱狀圖 114
圖4-74 Laccase催化紗帽山土中2,4 –二氯酚剩餘濃度柱狀圖 114
圖4-75 Peroxidase催化紗帽山土中2,4,6 -三氯酚剩餘濃度柱狀圖 115
圖4-76 Laccase催化紗帽山土中2,4,6 -三氯酚剩餘濃度柱狀圖 115
圖4-77 Peroxidase催化紗帽山土中2,3,4,5-四氯酚剩餘濃度柱狀圖 116
圖4-78 Laccase催化紗帽山土中2,3,4,5-四氯酚剩餘濃度柱狀圖 116
圖4-79 Peroxidase催化紗帽山土中五氯酚剩餘濃度柱狀圖 117
圖4-80 Laccase催化紗帽山土中五氯酚剩餘濃度柱狀圖 117
圖4-81 Peroxidase催化不同有機質含量土壤中2,4 –二氯酚剩餘濃度柱狀圖 118
圖4-82 Peroxidase催化不同有機質含量土壤中2,4,6-三氯酚剩餘濃度柱狀圖 119
圖4-83 Laccase催化不同有機質含量土壤中2,4 –二氯酚剩餘濃度柱狀圖 119
圖4-84 Laccase催化不同有機質含量土壤中2,4,6-三氯酚剩餘濃度柱狀圖 120
圖4-85 Peroxidase偶合紗帽山土中2,4-二氯酚之產物圖譜 121
圖4-86 Peroxidase偶合紗帽山土中2,4,6-三氯酚之產物圖譜 121
圖4-87 Peroxidase偶合彰化土中2,4-二氯酚之產物圖譜 122
圖4-88 Peroxidase偶合彰化土中2,4,6-三氯酚之產物圖譜 122
圖4-89 Laccase偶合紗帽山土中2,4-二氯酚之產物圖譜 122
圖4-90 Laccase偶合紗帽山土中2,4,6-三氯酚之產物圖譜 122
圖4-91 Laccase偶合彰化土中2,4-二氯酚之產物圖譜 123
圖4-92 Laccase偶合彰化土中2,4,6-三氯酚之產物圖譜 123
圖4-93 Peroxidase催化滅菌紗帽山土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量趨勢圖 124
圖4-94 Peroxidase催化未滅菌紗帽山土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量趨勢圖 125
圖4-95 Laccase催化滅菌紗帽山土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量趨勢圖                         125
圖4-96 Laccase催化未滅菌紗帽山土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量趨勢圖 126
圖4-97 Peroxidase催化滅菌紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量趨勢圖 126
圖4-98 Peroxidase催化滅菌台中土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量趨勢圖 127
圖4-99 Peroxidase催化未滅菌台中土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量趨勢圖 127
圖4-100 Laccase催化滅菌台中土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量趨勢圖 128
圖4-101 Laccase催化未滅菌台中土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量趨勢圖 128
圖4-102 Peroxidase催化紗帽山土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量柱狀圖 130
圖4-103 Peroxidase催化紗帽山土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量柱狀圖 131
圖4-104 Laccase催化紗帽山土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量柱狀圖 131
圖4-105 Laccase催化紗帽山土中2,4-二氯酚及2,4,6-三氯酚偶合產物相對產量柱狀圖 132
圖4-106 Peroxidase催化紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量柱狀圖 132
圖4-107 Peroxidase催化紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量柱狀圖 133
圖4-108 Peroxidase催化紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量柱狀圖 133
圖4-109 Peroxidase催化紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量柱狀圖 134
圖4-110 Laccase催化紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量柱狀圖 134
圖4-111 Laccase催化紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量柱狀圖 135
圖4-112 Laccase催化紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量柱狀圖 135
圖4-113 Laccase催化紗帽山土中2,3,4,5-四氯酚及五氯酚偶合產物相對產量柱狀圖 136
圖4-114 Peroxidase催化2,4-二氯酚土壤偶合產物相對產量柱狀圖 137
圖4-115 Peroxidase催化2,4,6-三氯酚土壤偶合產物相對產量柱狀圖 138
圖4-116 Laccase催化2,4-二氯酚土壤偶合產物相對產量柱狀圖 138
圖4-117 Laccase催化2,4,6-三氯酚土壤偶合產物相對產量柱狀圖 139
圖4-118 紗帽山2,4-二氯酚土壤未添加酵素質譜圖 140
圖4-119 紗帽山2,4-二氯酚土壤未添加酵素MS圖 141
圖4-120 紗帽山2,4-二氯酚土壤添加10U/g乾土Peroxidase偶合產物質譜圖 141
圖4-121 紗帽山2,4-二氯酚土壤添加10U/g乾土Peroxidase偶合產物MS圖 142
圖4-122 紗帽山2,4-二氯酚土壤添加30U/g乾土Laccase偶合產物質譜圖 143
圖4-123 紗帽山2,4-二氯酚土壤添加30U/g乾土Laccase偶合產物MS圖 143
圖4-124 紗帽山2,4,6-三氯酚土壤未添加酵素質譜圖 144
圖4-125 紗帽山2,4,6-三氯酚土壤未添加酵素MS圖 145
圖4-126 紗帽山2,4,6-三氯酚土壤添加5U/g乾土Peroxidase偶合產物質譜圖 145
圖4-127 紗帽山2,4,6-三氯酚土壤添加5U/g乾土Peroxidase偶合產物MS圖 146
圖4-128 紗帽山2,4,6-三氯酚土壤添加5U/g乾土Laccase偶合產物質譜圖 146
圖4-129 紗帽山2,4,6-三氯酚土壤添加5U/g乾土Laccase偶合產物MS圖 147
圖4-130 紗帽山2,4-二氯酚與2,4,6-三氯酚土壤添加20U/g乾土Peroxidase偶合產物MS圖 148
圖4-131 紗帽山2,4-二氯酚與2,4,6-三氯酚土壤添加20U/g乾土Peroxidase偶合產物MS圖 148
圖4-132 紗帽山2,4-二氯酚與2,4,6-三氯酚土壤添加20U/g乾土Laccase偶合產物MS圖 149
圖4-133 台中土2,4-二氯酚與2,4,6-三氯酚土壤添加20U/g乾土Peroxidase偶合產物MS圖 149
圖4-134 台中土2,4-二氯酚與2,4,6-三氯酚土壤添加20U/g乾土Peroxidase偶合產物MS圖 150
圖4-135 台中土2,4-二氯酚與2,4,6-三氯酚土壤添加20U/g乾土Laccase偶合產物MS圖 150
圖4-136 紗帽山2,3,4,5-四氯酚及五氯酚土壤添加20U/g乾土Peroxidase偶合產物MS圖 151
圖4-137 台中土2,3,4,5-四氯酚及五氯酚土壤添加20U/g乾土Peroxidase偶合產物MS圖 151
表 目 錄
表2-1 吸附與分佈之比較 7
表2-2 氯酚類化合物之物理化學性質 13
表2-3 氯酚污染物於地下水及土壤中之法規標準值 14
表2-4 IUBMB系統六大分類 22
表2-5 常見的偶合反應 32
表2-6 來源不同之酵素及其可催化偶合之物質 35
表3-1 高效能液相層析儀分析條件 41
表3-2 UPLC-HRMS操作條件 43
表3-3 HPLC-LRMS操作條件 44
表3-4 選用土壤一覽表 48
表3-5 選用土壤之基本性質 55
表3-6 選用土壤之pH值 56
表3-7 選用土壤之初始含水率及田間容水量 58
表4-1 偶合產物代號表 67
表4-2 配置氯酚土壤之回收率 89
參考文獻 1. Mattson, Sante; WIklande, Lamberwt , “The Amphoteric Double Layer And The Double Ionic Exchange In Soils ”, Received 15th June, (1939)
2. 王俐涵,”以游離及固定化酵素促進氯酚化合物偶合反應之研究”,碩士論文,國立中央大學環境工程研究所,(2013)
3. 王一雄,”土壤環境污染與農藥”,文海環境科學叢書,初版,(1999)
4. Felbeck, G T , “Structural Chemistry of Soil Humic Substance ”, Adv Agron , 327-368, (1965)
5. Chiou, C T ; Kile, D E , “Water Solubility Enhancement of DDT and Trichlorobenzene by some surfactant Below and Above the Critical Micelle Concentration”, Environ Sci & Technol , Vol 23, No 7, p 832-838, (1989)
6. Stevenson, F J , “Humus Chemistry: Genesis, Composition, Reactions ”, John Wiley & Sons, Canada, (1994)
7. Bear(Ed ), F E , “Organic matter decomposition and formation of humic substances ”, Hemistry Of The Soil, ACS Monograph Series, No 160, p 258, (1964)
8. Stevenson, F J , Humus Chemistry, Wiley, New York, (1982)
9. Skjemstad, J ; Spouncer, L ; Cowie, B ; Swift, R , “Calibration of the Rothamsted organic carbon turnover model (RothC ver 26 3), using measurable soil organic carbon pools ”, Aust J Soil Res 42, 79-88 (2004)
10. Ikeya, K ; Sleighter, R L ; Hatcher, P G ; Watanabe, A , ” Fourier transform ion cyclotron resonance mass spectrometricanalysis of the green fraction of soil humic acids ”, Rapid Commun Mass Spectrom , 27, 2559–2568, (2013)
11. Zhai, G ; Lehmler, H J ; Schnoor, J L , “Inhibition of cytochromes P450 and the hydroxylation of 4-monochlorobiphenyl in whole poplar ”, Envion Sci Technol ,47, pp 6829–6835, (2013)
12. 林玲珠,”表面改質之多孔性吸附介質對特定污染物吸附之研究”,碩士論文,國立中央大學環境工程研究所,(2013)
13. Chiou, C T , “Partition and Adsorption of Organic Contaminants in Environmental Systems”, Hoboken, N J : Wiley-Interscience, (2002)
14. Chiou, C T ; Porter, P E ; Schmedding, D W , “Partition Equilibriaof Nonionic Organic Compounds between Soil Organic Matter and Water”, Environ Sci Technol , 17, 227-231, (1983)
15. Grathwohl, P , “Influence of Organic Matter from Soils and Sediments from Various Organicon the Sorption of Some Chlorinated Aliphatic Hydrocarbons : Implications on KocCorrelations”, Environ Sci Technol, 24, 1687-1693, (1990)
16. Murphy, E M ; Zachara, J M ; and Smith, S C , “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds”, Environ Sci Technol , 24, 1507-1516, (1990)
17. Alexander, M , “Biodegradation and Bioremediation ”, Second Edition , (San Diego,California 92101–4495, USA) , (1999)
18. Bello, D ; Gil-Sotres, F ; Leirós, M C ; Trasar-Cepeda C , “Laboratory contamination with 2,4,5-trichlorophenol: effects onsome enzymatic activities in two forest and two agricultural soils of contrasting pH ” In: Trasar, C , Hernández, T , García, C ,Rad, C , González-Carcedo, S (Eds ), Soil Enzymology in the Recycling of Organic Wastes and Environmental Restoration Springer, Heildelberg, 219-229, (2011)

19. Angelucci, Domenica Mosca; Tomei, M Concetta, “Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction ”, Journal of Environmental Management , 159, 169-177, (2015)
20. Rani, Sunita; Sud, Dhiraj, “Role of enhanced solar radiation for degradation of triazophos pesticide in soil matrix ”, Solar Energy 120, 494–504, (2015)
21. Hinojosa, M Belén; Carreira, José A ; Roberto García-Ruíz; Dick, Richard P , “Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils ”, Soil Biology and Biochemistry, Volume 36, Issue 10, 1559–1568, (2004)
22. Bello, Diana; Carmen Trasar-Cepeda; Leirós, M Carmen; Fernando, Gil-Sotres, “Modification of enzymatic activity in soils of contrasting pH contaminated with 2,4-dichlorophenol and 2,4,5-trichlorophenol ”, Soil Biology & Biochemistry 56, 80-86, (2013)
23. Diez, M C ; Gallardo, F ; Tortella, G ; Rubilar, O ; Navia, R ; Bornhardt, C , “Chlorophenol degradation in soil columns inoculated with Anthracophyllum discolor immobilized on wheat grains ”, Journal of Environmental Management 95, S83-S87, (2012)
24. Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli, “Remediation of p-nitrophenol and pentachlorophenol mixtures contaminated soil using pulsed corona discharge plasma ”, Separation and Purification Technology, 122, 17–23, (2014)
25. Hamid, Forootanfar; Mohammad, Mehdi Movahedniaa; Soheila, Yaghmaei; Minoosadat, Tabatabaei-Sameni; Hossein Rastegar; Armin Sadighi; Mohammad Ali Faramarzi , ”Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase ”, ournal of Hazardous Materials 209–210 ,199–203, (2012)
26. Abu-Ashour, J , Joy, D M ; Lee, Hung; Whiteley, H R ; Zelin, S , ” Transport of microorganisms through soil ”, Water Air Soil Pollut 75, 141-158 , (1994)
27. Anasonye, Festus; Winquist, Erika; Kluczek-Turpeinen, Beata; Räsänen, Markus; Salonen, Kalle; Steffen, Kari T ; Tuomela, Marja , “Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil ”, Chemosphere 110 , 85–90, (2014)
28. Arora, Pankaj Kumar ; Bae, Hanhong , ”Bacterial degradation of chlorophenols and their derivatives ”, Microb Cell Fact 13, 31 , (2014)
29. United States Environmental Protection Agency (US EPA), 〈http://www epa gov acess〉 (accessed12 12 2014)
30. Devi, P ; Saroha, A K , “Synthesis of the magnetic biochar composites for use asan adsorbent for the removal of pentachlorophenol from the effluent ”, Bioresour Technol 169, 525-531 , (2014)
31. Perry, R H ; Green, D W , Perry’s Chemical Engineers’ Handbook, 7thed, McGraw-Hill, (1997)
32. Hajslová, J ; Kocourek, V ; Zemanová ; I ; Pudil, F ; Davídek, J , “Gas chromatographic determination of chlorinated phenols in the form of various derivatives “, Journal of Chromatography A 439, 307-316, (1988)
33. 中華民國行政院環境保護署,土壤及地下水整治法,(2011)
34. Radhika, M ; Palanivelu, K , ”Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent-kinetics and isotherm analysis ”, J Hazard Mater , B 138, 116–124, (2006)
35. 行政院環保署,(2015)
36. 黃煥彰,失落的記憶,看 守台灣季刊,第四卷第二期,80-87,(2003)
37. Boyd, S A ; Shelton D R , “Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge ”, Appl Environ Microbial , Vol 272-277, (1984)
38. Viswanath, B ; Rajesh, B ; Janardhan, A ; Kumar A P ; Narasimha, G , “Fungal laccases and their applications in bioremediation ”, Enzyme Res 21, Article ID 163-242, (2014)
39. Dec, Jerzy; Haider, Konrad; Bollag, Jean-Marc, ”Release of substituents from phenolic compounds during oxidative coupling reactions ”, Chemosphere 52, 549–556, (2003)
40. Fukushima, M ; Okabe, R ; Nishimoto, R ; Fukuchi, S ; Sato, T ; Terashima, M , Adsorption of pentachlorophenol to a humin-like substance–bentonite complexprepared by polycondensation reactions of humic precursors Appl Clay Sci 87,136–141 , (2014)
41. Häggblom, M ; Valo, R J , “Microbial transformation and degradation of Toxic Organic Chemicals ”, Bioremediation of chlorophenol wastes , In:Young LY, Cerniglia CE (eds) JohnWiley & Sons, New York, pp 389–434, (1985)
42. Laine, M M ; Jørgensen, K S , “Effective and safe composting of chlorophenol contaminated soil in pilot scale ”, Environ Sci Technol 31, 371–378, (1997)
43. Miller, M ; Stratton, G ; Murray, G , “Effects of nutrient amendments and temperature on the biodegradation of pentachlorophenol contaminated soil ”, Water Air Soil Pollut 151, 87–101 (2004)
44. Fatima, K ; Imran, A ; Amin, I ; Khan, Q M ; Afzal, M , “Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil ”, Environ Sci Pollut Res 23:6188–6196, (2016)
45. Ghausul-Hossain S M ; McLaughlan, R G , ”Oxidation of Chlorophenols in Aqueous Solution by Excess Potassium Permanganate ”, Water Air Soil Pollut 223, 1429-1435 , (2012)
46. Muhammad Afzal; Qaiser M Khan; Angela Sessitsch, “Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants ”, Chemosphere 117, 232–242, (2014)
47. Andreozzi, Roberto; Caprio, Vincenzo; Insola, Amedeo; Marotta, Raffaele , ”Advanced oxidation processes (AOP) for water purification and recovery ”, Catalysis Today 53, 51–59, (1999)
48. Rashid, J ; Barakat, M A ; Mohamed, R M ; Ibrahim, I A , “Enhancement of photocatalytic activity of zinc/cobalt spinel oxides by doping with ZrO2 for visible light photocatalytic degradation of 2-chlorophenol in wastewater ” , Journal of Photochemistry and Photobiology A: Chemistry 284 1–7, (2014)
49. 黃瑞淵,電化學技術處理土壤及地下水中五氯酚之研究,博士論文,國立中興大學環境工程學系,(2014)
50. Rodgers, James D ; Jedral, Wojciech; Bunce, Nigel J , “Electrochemical Oxidation of Chlorinated Phenols ”, Environ Sci Technol , 33 (9), pp 1453–1457 , (1999)
51. Calace, N ; Nardi, E Petronio, B M ; Pietroletti, M , ”Adsorption of phenols by papermill sludges ”, Environ pollut , 118:315-519 , (2002)
52. Adewuyi, Adewale; Göpfert, Andrea; Adewuyi, Omotayo Anuoluwapo; Wolff, Thomas, “Adsorption of 2-chlorophenol onto the surface of underutilized seed of Adenopus breviflorus: A potential means of treating waste water ”, Journal of Environmental Chemical Engineering 4, 664–672, (2016)
53. Calace, N ; Nardi, E ; Petronio, B M ; Pietroletti, M , “Adsorption of phenols by papermill sludges ”, Environ pollut , 118:315-519 , (2002)
54. Klibanov, A M ; Tu; Scott, K P , ” Peroxidase-catalyzed removal of phenols from coal-conversion waste waters ”, Science, 221:259-261 , (1983)
55. Hou, Jian feng; Liu, Feixia; Wu, Nan; Ju, Jiansong; Yu, Bo , “Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline degrading Rhodococcus rhodochrous strain ”, Journal of Nanobiotechnology , 14:5, (2016)
56. Ma, Wei; Zong, Panpan; Cheng, Zihong; Wan Baodong; Wang, Qi Sun, “Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water ”, Journal of Hazardous Materials 266 19–25, (2014)
57. 中華民國環境工程學會,「環境微生物」,(1999)
58. 陳國誠,「酵素工程學」,藝軒出版社,(1992)
59. Yoshida H , “Chemistry of lacquer (Urushi) part 1 ”, J Chem Soc , 43, 472–486, (1883)
60. Claus, H ,“Laccases: structure, reactions, distribution ”, Micron , 35, 93-96 , (2004)
61. Madhavi, Vernekar; Lele S S , “LACCASE: PROPERTIES AND APPLICATIONS ”, BioResources , Vol 4, No 4 ,1694-1717, (2009)
62. Bourbonnais, R ; Paice, M G , “Oxidation of non-phenolic substrates An expanded role for laccase in lignin iodegradation ”, FEBS Lett ,267,99–102 , (1990)
63. Sariaslani, F S ; Beale, J M ; Jr , Rosazza J P , “Oxidation of rotenone by polyporus anceps laccase ”, Nat Prod ,47, 692-697 , (1984)
64. Donati, Enrica; Polcaroa, Chiara M ; Ciccioli, Piero; Galli, Emanuela, “The comparative study of a laccase-natural clinoptilolite-based catalyst activity and free laccase activity on model compounds ”, Journal of Hazardous Materials, 289, 83–90, (2015)
65. Torres, E ; Bustos-Jaimes, I ; LeBorgne, S , ”Potential use of oxidative enzymes for the detoxification of organic pollutants ”, Appl Catal B Environ , 46, 1–15 , (2003)
66. Matilainen, Katriina; Hamalainen, Tiina; Savolainen, Anne; Sipilainen-Malm, Thea ; Peltonen, Jouko ; Erho, Tomi ; Smolander, Maria , “Performance and penetration of laccase and ABTS inks on various printing substrates ”,Colloids and Surfaces B: Biointerfaces , 90 , 119– 128 , (2012)
67. Bollag, J M , “Decontaminating soil with enzymes ”, Environ Sci Technol 26 (10), 1876−1881 , (1992)
68. Richardson, Andrew; McDougall, Gordon J , “Identification and partial purification of an oxidase from lignifying xylem of Leyland cypress (X Cupressocyparis leylandii) ”, Trees 12: 146- 152, (1998)
69. Vandertol-Vanier, H A ;Vazquez-Duhalt, R ;Tinoco, R ; Pickard, M A , “Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase ” J Ind Microbiol Biotechnol ,29, 214-220 , (2002)
70. Rittmann, Bruce E ; McCarty, Perry L , Environmental Biotechnology: Principles and Applications , (2001)
71. Decuypre, E V , “Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria ” 25-40 , (1998)
72. Gianfreda, L ; Bollag, J M , “Effect of Soils on the Behavior of Immobilized Enzymes ” Soil Sci Soc Am J , 58, 672-1681, (1999)
73. Šekuljica, Nataša Ž ; Gvozdenović, Milica M ; Knežević-Jugović, Zorica D ; Jugović, Branimir Z ; Grgur, Branimir N , “Biofuel cell based on horseradish peroxidase immobilized on copper sulfide as anode for decolorization of anthraquinone AV109 dye ”, Journal of Energy Chemistry, Volume 25, Issue 3, Pages 403–408, (2016)
74. Gerhardt, Karen E; Huang, X D ; Glick, B R ; Greenberg, B M , “Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges ”, Plant Science,176, 20-30, (2009)
75. Glaser, C , “Beiträge zur Kenntniss des ”, Acetenyl benzols European journal of inorganic chemistry, 2(1),422-424 , (1869)
76. Smith, M B ; March, J , “Reactions, mechanisms, and structure”,March's Advanced Organic Chemistry , (2001)
77. Chodkiewicz, W , Paris, Ann Chim, 2, 819–869, (1957)
78. Heck, R F ; Nolley, J P , “Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides”, J Org Chem ,37 (14),2320–2322, (1972)
79. Mizoroki, T ; Mori, K ; Ozaki, A , “Arylation of olefin with aryl iodide catalyzed by palladium ”, Bulletin of the Chemical Society of Japan,44(2),581-581, (1972)
80. Miyaura, N ; Suzuki, A , “Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst”, J Chem Soc ,Chem Commun ,(19), 866-867, (1979)
81. Lu, Junhe; Shao, Juan; Liu, Hui; Wang, Zunyao, Huang, Qingguo, “Formation of Halogenated Polyaromatic Compounds by Laccase Catalyzed Transformation of Halophenols ”, Environ Sci Technol , 49 (14), pp 8550–8557, (2015)
82. Mao, L ; Lu, J ; Habteselassie, M ; Luo, Q ; Gao, S ; Cabrera, M ; Huang, Q , “Ligninase-Mediated Removal of Natural and Synthetic Estrogens from Water: II Reactions of 17 beta-Estradiol ” Environ Sci Technol 44 (7), 2599−2604, (2010)
83. Friedel, C ; Crafts, J M ; Compt Rend , “Comptes rendus hebdomadaires des séances de l'Académie des sciences / publiés par MM les secrétaires perpétuels”,1392&1450, (1877)
84. Mita, Naruyoshi; Tawaki, Shin-ichiro; Uyama, Hiroshi; Kobayashi, Shiro, “Laccase-catalyzed oxidative polymerization of phenols ” Macromol Biosci ,3, 253–257 , (2003)
85. Uyama, H ; Kurioka, H ; Kaneko, I ; Kobayashi, S , “Synthesis of a new family of phenol by resin by enzymatic oxidative polymerization ”, Chem Lett 423 , (1994)
86. Nyanhongo, G S ; Erlacher, A ; Schroder, M ; Gubitz, G M , “Enzymatic immobilization of 2,4,6-trinitrotoluene (TNT) biodegradation products onto model humic substances ” Enzyme Microb Technol ; 36,1197–204 , (2006)
87. Ikeda, Ryohei; Tanaka, Hozumi; Uyama, Hiroshi; Kobayashi, Shiro, ”Laccase-catalyzed polymerization of acrylamide ” Macromol Rapid Comrnran 19,423-425, (1998)
88. Schultz, Asgard; Jonas, Ulrike; Hammer, Elke; Schauer Frieder, “Dehalogenation of chlorinated hydroxybiphenyls by fungal Laccase ”,Applied and Environmental Microbiology Sept ,p 4377–4381, (2001)
89. Murugesan, Kumarasamy; Chang, Yoon-Young; Kim, Young-Mo; Jeon, Jong-Rok; Kim, Eun-Ju; Chang, Yoon-Seok, “Enhanced transformation of triclosan by laccase in the presence of redox mediators ” ,water research 44,298– 308, (2001)
90. Mattinen, Maija-Liisa; Kruus, Kristiina; Buchert Johanna; Nielsen Jacob H ; Andersen, Henrik J ; Steffensen, Charlotte L , “Laccase-catalyzed polymerization of tyrosine-containing peptides ”, FEBS J , 272(14):3640-50 , (2005)
91. Bodtke, Anja; Pfeiffer, Wolf-Diethard; Ahrensb Norbert; Peter Langerc, “Horseradish peroxidase (HRP) catalyzed oxidative coupling reactions using aqueous hydrogen peroxide: an environmentally benign procedure for the synthesis of azine pigments”, Tetrahedron 61, 10926–10929, (2005)
92. Setti, Leonardo; Scali, Sara; Angeli, Igor Degli; Pifferi, Pier Giorgio, “Horseradish peroxidase-catalyzed oxidative coupling of 3-methyl 2-benzothiazolinone hydrazine and methoxyphenols”, Enzyme and 107 Microbial Technology 22:656–661, (1998)
93. Baesjou P J ; Driessen W L ; Challa G ; Reedijk J , “Ab initio calculation on 2,6-dimethylphenoland 4-(2,6-dimethylphenoxy)-2, 6-dimethylphenol Evidence of an important role for the phenoxonium cation in the copper-catalyzed oxidative phenol coupling reaction ”, J Am Chem Soc,119:12590 , (1997)
94. Dec, Jerzy; Bollag, Jean-Marc , “Dehalogenation of chlorinated phenols during oxidative coupling ”,Environ Sci Technol ,28, 484-490, (1994)
95. Atagana, H I ; Haynes, R J ; Wallis, F M , “Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil ”, Biodegradation 14: 297–307, 2003
96. 吳正宗,土壤與質體分析技術,國立中興大學土壤環境科學系教材,(2013)
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2016-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明