參考文獻 |
[1] 吳明隆.(2009). SPSS操作與應用-問卷統計設計分析實務:五南出版.
[2] 張春興. (1991). 現代心理學: 現代人研究自身問題的科學. 臺灣東華.
[3] 陳建中, 卓淑玲, & 曾榮瑜. (2013). 台灣地區華人情緒與相關心理生理資料庫—專業表演者臉部表情常模資料. Chinese Journal of Psychology, 55(4), 439-454.
[4] 顏乃欣. 情緒對決策歷程的影響. 人文與社會科學簡訊,心理學前瞻研究 2010年9月,11卷4期. 113.
[5] 中時電子報.(2015). 研究:週一11時最憂鬱2點心情才好。取自於2015年10月12日,從 http://www.chinatimes.com/realtimenews/20151012003541-260408
[6] 東森新聞(2016). 打入正妹的內心世界?鄉民神解:抒壓的Plurk是關鍵。取自於2016年1月20日,從 http://www.ettoday.net/news/20160120/634107.htm
[7] Aggarwal, R., & Rivoli, P. (1989). Seasonal and day‐of‐the‐week effects in four emerging stock markets. Financial review, 24(4), 541-550.
[8] Bai, S.-W(2013)考量時間因素的微網誌上產品推薦之研究; Recommendations via short messages with time factors. 2013.
[9] Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011, February). Everyone′s an influencer: quantifying influence on twitter. InProceedings of the fourth ACM international conference on Web search and data mining, ACM, 65-74.
[10] Banerjee, N., Chakraborty, D., Dasgupta, K., Mittal, S., Joshi, A., Nagar, S., ... & Madan, S. (2009, November). User interests in social media sites: an exploration with micro-blogs. In Proceedings of the 18th ACM conference on Information and knowledge management, ACM, 1823-1826.
[11] Baumeister, R. F., Vohs, K. D., DeWall, C. N., & Zhang, L. (2007). How emotion shapes behavior: Feedback, anticipation, and reflection, rather than direct causation. Personality and Social Psychology Review, 11(2), 167-203.
[12] Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market.Journal of Computational Science, 2(1), 1-8.
[13] Chang, P. S., Ting, I. H., & Wang, S. L. (2011). Towards social recommendation system based on the data from microblogs. In Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on. IEEE.672-677.
[14] Chen, M., & Bargh, J. A. (1999). Consequences of automatic evaluation: Immediate behavioral predispositions to approach or avoid the stimulus. Personality and social psychology bulletin, 25(2), 215-224.
[15] Chen, Y. L., Cheng, L. C., & Chuang, C. N. (2008). A group recommendation system with consideration of interactions among group members. Expert systems with applications, 34(3), 2082-2090.
[16] Chiu, C. M., Hsu, M. H., & Wang, E. T. (2006). Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories.Decision support systems, 42(3), 1872-1888.
[17] Christensen, I. A., & Schiaffino, S. (2011). Entertainment recommender systems for group of users. Expert Systems with Applications, 38(11), 14127-14135.
[18] Christie, M. J., & Venables, P. H. (1973). Mood changes in relation to age, EPI scores, time and day. British Journal of Social and Clinical Psychology, 12(1), 61-72.
[19] Cross, F. (1973). The behavior of stock prices on Fridays and Mondays. Financial analysts journal, 29(6), 67-69.
[20] Dellarocas, C., Zhang, X. M., & Awad, N. F. (2007). Exploring the value of online product reviews in forecasting sales: The case of motion pictures. Journal of Interactive marketing, 21(4), 23-45.
[21] Dhar, V., & Chang, E. A. (2009). Does chatter matter? The impact of user-generated content on music sales. Journal of Interactive Marketing, 23(4), 300-307.
[22] Dong, R., Schaal, M., O’Mahony, M. P., McCarthy, K., & Smyth, B. (2013). Opinionated product recommendation. InCase-Based Reasoning Research and Development, 44-58. Springer Berlin Heidelberg.
[23] Drever, J. (1952). A dictionary of psychology.
[24] Elliot, A. J., & Thrash, T. M. (2002). Approach-avoidance motivation in personality: approach and avoidance temperaments and goals. Journal of personality and social psychology, 82(5), 804.
[25] Esparza, S. G., O’Mahony, M. P., & Smyth, B. (2012). Mining the real-time web: a novel approach to product recommendation.Knowledge-Based Systems, 29, 3-11.
[26] Farber, M. L. (1953). Time-perspective and feeling-tone: A study in the perception of the days. The Journal of Psychology, 35(2), 253-257.
[27] Fontaine, J. R., Scherer, K. R., Roesch, E. B., & Ellsworth, P. C. (2007). The world of emotions is not two-dimensional.Psychological science, 18(12), 1050-1057.
[28] Fredrickson, B. L. (1998). What good are positive emotions?. Review of general psychology, 2(3), 300.
[29] French, K. R. (1980). Stock returns and the weekend effect. Journal of financial economics, 8(1), 55-69.
[30] Froggatt, P. (1970). Short-term absence from industry: I Literature, definitions, data, and the effect of age and length of service. British Journal of Industrial Medicine, 27(3), 199-210.
[31] Galati, D., Sini, B., Tinti, C., & Testa, S. (2008). The lexicon of emotion in the neo-Latin languages. Social science information,47(2), 205-220.
[32] Gibbons, M. R., & Hess, P. (1981). Day of the week effects and asset returns. Journal of business, 579-596.
[33] Glance, N., Hurst, M., & Tomokiyo, T. (2004, May). Blogpulse: Automated trend discovery for weblogs. In WWW 2004 workshop on the weblogging ecosystem: Aggregation, analysis and dynamics (Vol. 2004).
[34] Gondhalekar, V., & Mehdian, S. (2003). The Blue-Monday Hypothesis: Evidence Based on Nasdaq Stocks, 1971-2000. Quarterly Journal of Business and Economics, 73-89.
[35] Guo, J., Zhang, P., & Guo, L. (2012). Mining hot topics from Twitter streams. Procedia Computer Science, 9, 2008-2011.
[36] Hill, S., Provost, F., & Volinsky, C. (2006). Network-based marketing: Identifying likely adopters via consumer networks. Statistical Science, 256-276.
[37] Izard, C. E. (1991). The psychology of emotions. Springer Science & Business Media.
[38] Jacobs, B. I., & Levy, K. N. (1988). Calendar anomalies: Abnormal returns at calendar turning points. Financial Analysts Journal,44(6), 28-39.
[39] K. T. Strongman, 游恒山譯(1993).情緒心理學(第三版):五南圖書出版.
[40] Kamara, A. (1997). New evidence on the Monday seasonal in stock returns. Journal of Business, 63-84.
[41] Keim, D. B., & Stambaugh, R. F. (1984). A further investigation of the weekend effect in stock returns. The journal of finance, 39(3), 819-835.
[42] Kim, H., Suh, K. S., & Lee, U. K. (2013). Effects of collaborative online shopping on shopping experience through social and relational perspectives. Information & Management, 50(4), 169-180.
[43] Kiss, C., & Bichler, M. (2008). Identification of influencers—measuring influence in customer networks. Decision Support Systems, 46(1), 233-253.
[44] Lang, A. (2006). Using the limited capacity model of motivated mediated message processing to design effective cancer communication messages. Journal of Communication, 56(s1), S57-S80.
[45] Lazarus, R. S. (1975). A cognitively oriented psychologist looks at biofeedback. American Psychologist, 30(5), 553.
[46] Li, F., & Du, T. C. (2011). Who is talking? An ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs. Decision Support Systems, 51(1), 190-197.
[47] Li, Y. M., & Shiu, Y. L. (2012). A diffusion mechanism for social advertising over microblogs. Decision Support Systems,54(1), 9-22.
[48] Liao, D-H. (2015). Microblog User Emotion and its Impact on the Recommendation Effectiveness. 2015.
[49] Logunov, A., & Panchenko, V. (2011). Characteristics and predictability of Twitter sentiment series. In 19th International COngress on Modelling and Simulation, 1617-1623.
[50] Markese, J. (1989). Stock market anomalies: Folklore that may not be myth. American Association of Individual Investors Journal,11, 30-33.
[51] McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 415-444.
[52] Mishne, G., & Glance, N. S. (2006, March). Predicting Movie Sales from Blogger Sentiment. In AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, 155-158.
[53] Ng, C. S. P. (2013). Intention to purchase on social commerce websites across cultures: A cross-regional study. Information & management, 50(8), 609-620.
[54] O′Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. ICWSM,11(122-129), 1-2.
[55] O′Mahony, M. P., & Smyth, B. (2009, October). Learning to recommend helpful hotel reviews. In Proceedings of the third ACM conference on Recommender systems. ACM. 305-308
[56] Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classification using machine learning techniques. InProceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79-86). Association for Computational Linguistics.
[57] Patel, J. M., & Wolfson, M. A. (1982). Good news, bad news, and the intraday timing of corporate disclosure. The Accounting Review, 57, 509-527.
[58] Pecjak, V. (1970). Verbal synesthesiae of colors, emotions, and days of the week.Journal of verbal learning and verbal behavior, 9(6), 623-626.
[59] Penman, S. H. (1987). The distribution of earnings news over time and seasonalities in aggregate stock returns. Journal of Financial Economics, 18(2), 199-228.
[60] Peter Pomerantsev. (2015). Nothing is True and Everything is possible: Abventures in Modern: Faber & Faber; Main edition (10 Dec. 2015)
[61] Pettengill, G. N. (1994). An experimental study of the “blue-Monday” hypothesis. The Journal of Socio-Economics, 22(3), 241-257.
[62] Phelan, O., McCarthy, K., & Smyth, B. (2009, October). Using twitter to recommend real-time topical news. In Proceedings of the third ACM conference on Recommender systems. ACM. 385-388
[63] Roblyer, M. D., McDaniel, M., Webb, M., Herman, J., & Witty, J. V. (2010). Findings on Facebook in higher education: A comparison of college faculty and student uses and perceptions of social networking sites. The Internet and higher education, 13(3), 134-140.
[64] Rogalski, R. J. (1984). New findings regarding day‐of‐the‐week returns over trading and non‐trading periods: a note. The Journal of Finance, 39(5), 1603-1614.
[65] Rogalski, R. J. (1984). New findings regarding day‐of‐the‐week returns over trading and non‐trading periods: a note. The Journal of Finance, 39(5), 1603-1614.
[66] Rossi, A. S., & Rossi, P. E. (1977). Body time and social time: Mood patterns by menstrual cycle phase and day of the week. Social Science Research, 6(4), 273-308.
[67] Russell, J. A. (1983). Pancultural aspects of the human conceptual organization of emotions. Journal of personality and social psychology, 45(6), 1281.
[68] Rystrom, D. S., & Benson, E. D. (1989). Investor psychology and the day-of-the-week effect. Financial Analysts Journal, 45(5), 75-78.
[69] Schumaker, R. P., Zhang, Y., Huang, C. N., & Chen, H. (2012). Evaluating sentiment in financial news articles. Decision Support Systems, 53(3), 458-464.
[70] Schwarz, N., & Clore, G. L. (1996). Feelings and phenomenal experiences. Social psychology: Handbook of basic principles, 2, 385-407.
[71] Smith, C. A., & Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion.Journal of personality and social psychology,48(4), 813.
[72] Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. M. (2014). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926-957.
[73] Stone, A. A., Hedges, S. M., Neale, J. M., & Satin, M. S. (1985). Prospective and cross-sectional mood reports offer no evidence of a" blue Monday" phenomenon. Journal of Personality and Social Psychology, 49(1), 129.
[74] Thelwall, M., Buckley, K., & Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62(2), 406-418.
[75] Ting, I. H., Chang, P. S., & Wang, S. L. (2012). Understanding Microblog Users for Social Recommendation Based on Social Networks Analysis. J. UCS, 18(4), 554-576.
[76] Tomkins, S. S. (1962). Affect, imagery, consciousness: Vol. I. The positive affects.
[77] Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. ICWSM, 10, 178-185.
[78] Turney, P. D. (2002, July). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. InProceedings of the 40th annual meeting on association for computational linguistics (pp. 417-424). Association for Computational Linguistics.
[79] Van den Bulte, C., & Wuyts, S. H. K. (2007). Social networks in marketing. MSI Relevant Knowledge Series.
[80] Venables, P. H., & Christie, M. J. (1974). Neuroticism, physiological state and mood: An exploratory study of Friday/Monday changes. Biological psychology, 1(3), 201-211.
[81] Wang, K. Y., Ting, I. H., & Wu, H. J. (2013). Discovering interest groups for marketing in virtual communities: An integrated approach.Journal of Business Research, 66(9), 1360-1366.
[82] Wegener, D. T., & Petty, R. E. (1994). Mood management across affective states: the hedonic contingency hypothesis. Journal of personality and social psychology, 66(6), 1034.
[83] Westbrook, R. A. (1987). Product/consumption-based affective responses and postpurchase processes.Journal of marketing research, 258-270.
[84] Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics.Journal of marketing, 74(2), 133-148. |