博碩士論文 103423047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.218.54.178
姓名 簡嘉成(Chia-Chen Chien)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 結合本體論與網路分析程序法於軟體專案風險之辨識與評估
(Integrate Ontology and Analytic Network Process for Software Project Risks Identification and Assessment)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 軟體專案開發過程中會面臨許多不確定性因素與風險,而風險若能被有效地被掌握與處理,不僅可以避免預算超支及時程延宕等風險,其經驗與知識亦可提供組織進一步分享及重用。然而,風險辨識為一知識密集的活動,在實務上必須仰賴專案人員的經驗來辨識風險,而組織若能保存與重用過往的經驗與知識,將提升專案的績效與知識再利用。端此,本研究嘗試建立一個以本體論為基礎之系統,塑模組織的經驗及知識以協助專案相關人員辨識風險項目,進而辨識風險與其交互影響關係,再透過網路分析程序法的評估,以量化風險之間的交互影響程度,協助專案團隊辨識風險之間複雜的交互關係。此外,當專案進行的過程中,可能因為專案結構或是外部環境的改變,專案經理需要考慮到專案屬性的變化,例如團隊流動率。為了解決該問題本研究系統也將提供專案成員更新專案屬性再次辨識專案風險,以完整掌握專案風險的脈絡。
摘要(英) During the entire software cycle, software development processes faced many risks and uncertainties. If these risks can be controlled and eliminated effectively, it
could help projects to avoid running out of budget and to prevent project schedule delay. The knowledge and experience about control risks could help organizations manage risk in the future. However, risk identification is a knowledge-intensive task which is relies on member′s experience. If organization preserve and reuse the prior experience, it could improve project performance and knowledge reusability. In this regard, this research attempted to create the ontology-based system, which models the experience and knowledge of organization, to support project member to identify risks and risk
interactions. After that, the system evaluates the interaction degree of each risk factor by Analytic Network Process method. Therefore, projects are facing a growing complexity, in both of project structure and external environment. Project manager needs to consider the changing of parameters number, e.g., team member turnover. To solve this problem, this system provides an additional function for team member to update the project attribute. After updating the attributes, system would identify the project risks again, so that project team could handle the whole risk contextual.
關鍵字(中) ★ 軟體開發專案
★ 風險辨識
★ 風險評估
★ 本體論
★ 網路分析程序法
關鍵字(英) ★ Software development project
★ Risk identification
★ Risk assessment
★ Ontology
★ Analytic Network Process
論文目次 摘要.............................................. i
Abstract ........................................ ii
目錄 ............................................. iii
圖目錄 ............................................ v
表目錄 ............................................ vi
第一章 緒論......................................... 1
1.1. 研究背景與動機.................................. 1
1.2. 研究目標 ...................................... 3
1.3. 研究範圍與假設................................. 4
1.4. 研究架構 ...................................... 5
第二章 文獻探討 ..................................... 7
2.1. 軟體專案風險管理................................ 7
2.1.1. 風險管理 ..................................... 7
2.1.2. 軟體風險因子................................... 9
2.2. 風險辨識及評估方法.............................. 16
2.3. 本體論 ........................................ 18
2.4. 網路分析程序法.................................. 20
第三章 系統模型與設計................................. 26
3.1. 系統架構與回饋機制............................... 26
3.2. 風險因子設計與建立本體 ........................... 27
3.3. 規則設計 ....................................... 41
3.4. 網路分析程序法之計算模型......................... 45
第四章 系統與案例展示 ................................ 53
4.1. 個案描述 ....................................... 54
4.2. 知識擷取與建立.................................. 56
4.3. 功能展示 ....................................... 59
第五章 系統驗證 ..................................... 67
5.1. 系統預測品質分析................................. 67
5.1.1. 型一型二誤差驗證 .............................. 67
5.2. 使用者驗證 ..................................... 69
5.2.1. 使用者訪談 .................................... 69
5.2.2. 訪談結果 .................................... 71
第六章 結論 ....................................... 78
6.1. 研究結論 ....................................... 78
6.2. 研究限制與未來展望............................... 79
參考文獻 ........................................... 80
參考文獻 1. 張紹勳(2012)。模糊多準則評估法及統計。台灣五南圖書出版股份有限公司。
2. 鄧振源(2004)。計畫評估-方法與應用(2 版)。基隆:運籌規劃與管理研究中心。
3. 古永嘉及楊雪蘭(2009)。企業研究方法,華泰文化。
4. 鄧振源(2012)。多準則決策分析方法與應用。台北市: 鼎茂圖書.
5. 戚玉樑(2005)。以本體技術為基礎的知識庫建置程序及其應用。資訊科技與社會,5(2),1-18。
6. 資策會官方網站。取自http://www.iii.org.tw/About/Department.aspx?dp_sqno
=1&fm_sqno=36
7. Aaen, I. (2008). Essence: facilitating software innovation. European Journal of Information Systems, 17(5), 543-553.
8. Bannerman, P. L. (2008). Risk and risk management in software projects: A reassessment. Journal of Systems and Software, 81(12), 2118-2133.ISO 690
9. Boehm, B. W. (1991). Software risk management: principles and practices. Software, IEEE, 8(1), 32-41.
10. Bowles, J. B. (1998). The new SAE FMECA standard. In Reliability and Maintainability Symposium.
11. Caballero-Luque, A., Aragonés-Beltrán, P., García-Melón, M., & Dema-Pérez, C. , 2010. Analysis of the alignment of company goals to web content using ANP.
International Journal of Information Technology & Decision Making, 9(03), 419-436.
12. Carr, M. J., Konda, S. L., Monarch, I., Ulrich, F. C., & Walker, C. F.(1993).Taxonomy-based risk identification (No. CMU/SEI-93-TR-06).
13. Carr, V., & Tah, J. H. M. (2001). A fuzzy approach to construction project risk assessment and analysis: construction project risk management system. Advances
in Engineering software, 32(10), 847-857.
14. Catal, C. (2011). Software fault prediction: A literature review and current trends.
Expert systems with applications, 38(4), 4626-4636.
15. Charette, R. N. (2005). Why software fails. IEEE spectrum, 42(9), 36.
16. Charette, R.N., 1989. Software Engineering Risk Analysis and Management. McGraw Hill, New York.
17. Chen, C. Y., & Chong, P. P. (2011). Software engineering education: A study on conducting collaborative senior project development. Journal of systems and Software, 84(3), 479-491.
18. Chung, S. H., Lee, A. H., & Pearn, W. L. (2005). Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. International
Journal of Production Economics, 96(1), 15-36.
19. Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully completing case study research: combining rigour, relevance and pragmatism. Information systems
journal, 8(4), 273-289.
20. Demirtas, E. A., & Ustun, O. (2009). Analytic network process and multi-period goal programming integration in purchasing decisions. Computers & Industrial
Engineering, 56(2), 677-690.
21. Dhlamini, J., Nhamu, I., & Kaihepa, A. (2009, June). Intelligent risk management tools for software development. In Proceedings of the 2009 Annual Conference of the Southern African Computer Lecturers′ Association (pp. 33-40). ACM.
22. Diekmann, J. E. (1992). Risk analysis: lessons from artificial intelligence. International Journal of Project Management, 10(2), 75-80.
23. Du, S., Keil, M., Mathiassen, L., Shen, Y., & Tiwana, A. (2007). Attention-shaping tools, expertise, and perceived control in IT project risk assessment. Decision
Support Systems, 43(1), 269-283.
24. Ergu, D., Kou, G., Shi, Y., & Shi, Y. (2014). Analytic network process in risk assessment and decision analysis. Computers & Operations Research, 42, 58-74.
25. Ericson, C. A., & Ll, C. (1999). Fault tree analysis. In System Safety Conference (pp. 1-9).
26. Falbo, R. A., Ruy, F. B., Bertollo, G., & Togneri, D. F.(2004). Learning how to manage risks using organizational knowledge. In Advances in Learning Software Organizations (pp. 7-18).
27. Fan, C. F., & Yu, Y. C. (2004). BBN-based software project risk management. Journal of Systems and Software, 73(2), 193-203.
28. Fang, C., & Marle, F. (2012). A simulation-based risk network model for decision support in project risk management. Decision Support Systems, 52(3), 635-644.
29. Giaretta, P., & Guarino, N. (1995). Ontologies and knowledge bases towards a terminological clarification. Towards very large knowledge bases: knowledge
building & knowledge sharing, 25, 32.
30. Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing?. International journal of human-computer studies, 43(5),
907-928.
31. Hafeez, K., Zhang, Y., & Malak, N. (2002). Determining key capabilities of a firm using analytic hierarchy process. International journal of production economics, 76(1), 39-51.
32. Han, W. M., & Huang, S. J. (2007). An empirical analysis of risk components and performance on software projects. Journal of Systems and Software, 80(1), 42-50.
33. Heal, G., & Kunreuther, H. (2007). Modeling interdependent risks. Risk Analysis, 27(3), 621-634.
34. Higuera, R. P., & Haimes, Y. Y. (1996). Software Risk Management (No. CMU/SEI-96-TR-012). CARNEGIE-MELLON UNIV PITTSBURGH PASOFTWARE ENGINEERING INST.
35. Hillson, D. (2002). Extending the risk process to manage opportunities. International Journal of project management, 20(3), 235-240.
36. Horrocks, I., Patel-Schneider, P. F., Bechhofer, S., & Tsarkov, D. (2005). OWL rules: A proposal and prototype implementation. Web Semantics: Science, Services and Agents on the World Wide Web, 3(1), 23-40.
37. Hu, Y., Huang, J., Chen, J., Liu, M., & Xie, K. (2007, August). Software project risk management modeling with neural network and support vector machine
approaches. In Natural Computation, 2007. ICNC 2007. Third International Conference on (Vol. 3, pp. 358-362). IEEE.
38. Jiang, J. J., Klein, G., & Discenza, R. (2001). Information system success as impacted by risks and development strategies. IEEE Transactions on Engineering
Management, 48(1), 46-55.
39. Joorabchi, M. E., Mesbah, A., & Kruchten, P. (2013). Real challenges in mobile app development. In Empirical Software Engineering and Measurement, 2013 ACM/IEEE International Symposium on (pp. 15-24).
40. Karolak, D.W., (1996). Software Engineering Risk Management. IEEE Computer Society Press.
41. Lee, E., Park, Y., & Shin, J. G. (2009). Large engineering project risk management using a Bayesian belief network. Expert Systems with Applications, 36(3), 5880-5887.
42. Lee, J. W., & Kim, S. H. (2000). Using analytic network process and goal programming for interdependent information system project selection. Computers & Operations Research, 27(4), 367-382.
43. Manifesto, C. H. A. O. S. (2013). The Standish Group International.
44. Marcelino-Sádaba, S., Pérez-Ezcurdia, A., Lazcano, A. M. E., & Villanueva, P. (2014). Project risk management methodology for small firms. International Journal of Project Management, 32(2), 327-340.
45. Momoh, J. A. & Zhu, J., (2003). Optimal Generation Scheduling Based on AHP/ANP. IEEE Transaction on System, Man, & Cybernetics Part B: Cybernetics, 33(3), 531-535.
46. Neef, D., (2005). Managing corporate risk through better knowledge management. The Learning Organization 12 (2), 112–124.
47. Neumann, D. E. (2002). An enhanced neural network technique for software risk analysis. IEEE Transactions on software engineering, 28(9), 904-912.
48. Niemira, M. P., & Saaty, T. L. (2004). An analytic network process model for financial-crisis forecasting. International Journal of Forecasting, 20(4), 573-587.
49. PMI, S. C. (2013). A Guide to the Project Management Body of Knowledge (PMBOK) (2013 ed.), Project Management Institute, Newton Square, PA, USA, 2013.
50. Pressman, R. S. (2005). Software engineering: a practitioner′s approach. Palgrave Macmillan.
51. Raz, T., & Michael, E. (2001). Use and benefits of tools for project risk management. International journal of project management, 19(1), 9-17.
52. Saaty, T. L. (1996). Analytical network process. Pittsburgh: RWS Publications.
53. Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. IEEE Transactions on software engineering, 25(4), 557-572.
54. Seliya, N., & Khoshgoftaar, T. M. (2007). Software quality estimation with limited fault data: a semi-supervised learning perspective. Software Quality Journal, 15(3), 327-344.
55. Simister, S. J.(2004). Qualitative and quantitative risk management. The Wiley guide to managing projects, 30-47.
56. Standish Group International, Inc. (2009) CHAOS Summary 2009. report. from: https://www.classes.cs.uchicago.edu/archive/2014/fall/512101/required.reading/ Standish.Group.Chaos.2009.pdf. Retrieved April 5, 2016.
57. Taroun, A. (2014). Towards a better modelling and assessment of construction risk: Insights from a literature review. International Journal of Project Management, 32(1), 101-115.
58. Wallace, L., Keil, M., & Rai, A. (2004). Understanding software project risk: a cluster analysis. Information & Management, 42(1), 115-125.
59. Wang, Q., Zhu, J., & Yu, B. (2007, April). Feature selection and clustering in software quality prediction. In Proceedings of the 11th international conference
on Evaluation and Assessment in Software Engineering, EASE (Vol. 7, pp. 21-32).
60. Ward, S., & Chapman, C. (2004). Making risk management more effective.
61. Warkentin, M., Moore, R. S., Bekkering, E., & Johnston, A. C. (2009). Analysis of systems development project risks: An integrative framework. ACM SIGMIS
Database, 40(2), 8-27.
62. Wasserman, A. I. (2010). Software engineering issues for mobile application development. In Proceedings of the FSE/SDP workshop on Future of software engineering research (pp. 397-400). ACM.
63. Yang, B., Yin, Q., Xu, S., & Guo, P. (2008). Software quality prediction using affinity propagation algorithm. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (pp. 1891-1896).
指導教授 陳仲儼(Chung-Yang Chen) 審核日期 2016-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明