摘要(英) |
With the evolution of data communications technology, as well as significantly enhance the computing power of digital, which derived the fourth industrial revolution, also known as the "Industry 4.0." Cyber-Physical System (CPS) is not only key technologies for "Industry 4.0", but also currently a hot topic. With computers, sensors and the use of new Internet technology to link various equipment, machines and digital systems through communication and interaction between them to integrate of virtual and physical world. By adding new kind of system of wisdom and capability to meet the immediate perception, dynamic control, and provides intelligent message service. Therefore, disjoint industrial areas and IT fields to start a conversation in IOT. Future every production processes in intelligence factory, each operating devices have an independent capacity, automated production line to complete the operation. And each device can communicate with each other, real-time monitoring the surrounding environment, always find a problem to be eliminated, but also has a more flexible.
Quality function Deployment (QFD) has been widely used in many fields, such as product design, process design and project development. It can be converted to customer demand for tissue engineering and technology, through the practice of engineering and technology, and thus the success of reach to meet customer demand; Design Structure Matrix (DSM) has an easy to identify, easy to understand the advantages, readily shows the relationship between each of the design parameters. This research will be an industry 4.0 environment as the background, use QFD to design smart factory, and use Design Structure Matrix (DSM) to design process. Base on the results of DSM interaction to design smart factory used in industrial 4.0 environments. |
參考文獻 |
Akao, Yoji. "Quality function deployment." (2004).
Azuma, Ronald T. "A survey of augmented reality." Presence: Teleoperators and virtual environments 6.4 (1997): 355-385.
Baheti, Radhakisan, and Helen Gill. "Cyber-physical systems." The impact of control technology 12 (2011): 161-166.
Bauer, Martin, Lamine Jendoubi, and Oliver Siemoneit. "Smart Factory–Mobile Computing in Production Environments." Proceedings of the MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (WAMES 2004). 2004.
Browning, Tyson R. "Applying the design structure matrix to system decomposition and integration problems: a review and new directions." IEEE Transactions on Engineering management 48.3 (2001): 292-306.
Browning, Tyson R. "Design structure matrix extensions and innovations: a survey and new opportunities." IEEE Transactions on Engineering Management 63.1 (2016): 27-52.
Chan, Lai-Kow, and Ming-Lu Wu. "Quality function deployment: A literature review." European Journal of Operational Research 143.3 (2002): 463-497.
Kim, Eui-Jik, and Sungkwan Youm. "Machine-to-machine platform architecture for horizontal service integration." EURASIP Journal on Wireless Communications and Networking 2013.
Govers, Cor PM. "What and how about quality function deployment (QFD)."International journal of production economics 46 (1996): 575-585.
Heng, Stefan. "Industry 4.0: Upgrading of Germany′s Industrial Capabilities on the Horizon." Available at SSRN 2656608 (2014).
Shrouf, Fadi, Joaquin Ordieres, and Giovanni Miragliotta. "Smart factories in industry 4.0: a review of the concept and of energy management approached in production based on the Internet of things paradigm." 2014 IEEE International Conference on Industrial Engineering and Engineering Management. IEEE, 2014.
Jazdi, Nasser. "Cyber physical systems in the context of Industry 4.0."Automation, Quality and Testing, Robotics, 2014 IEEE International Conference on. IEEE, 2014.
Kao, Hung-An, et al. "A Cyber Physical Interface for Automation Systems—Methodology and Examples." Machines 3.2 (2015): 93-106.
Kagermann, Henning, et al. Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion, 2013.
Lacey, Gerard, and Kenneth M. Dawson-Howe. "The application of robotics to a mobility aid for the elderly blind." Robotics and Autonomous Systems 23.4 (1998): 245-252.
Lee, Edward A. "Cyber physical systems: Design challenges." 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). IEEE, 2008.
Lucke, Dominik, Carmen Constantinescu, and Engelbert Westkämper. "Smart factory-a step towards the next generation of manufacturing." Manufacturing systems and technologies for the new frontier. Springer London, 2008. 115-118.
MacDougall, William. Industrie 4.0: Smart Manufacturing for the Future. Germany Trade & Invest, 2014.
McAfee, Andrew, et al. "Big data." The management revolution. Harvard Bus Rev 90.10 (2012): 61-67.
Shi, Jianhua, et al. "A survey of cyber-physical systems." Wireless Communications and Signal Processing (WCSP), 2011 International Conference on. IEEE, 2011.
Wasserman, Gary S. "On how to prioritize design requirements during the QFD planning process." IIE transactions 25.3 (1993): 59-65.
Yassine, A. "An introduction to modeling and analyzing complex product development processes using the design structure matrix (DSM) method."Urbana 51.9 (2004): 1-17.
Zanella, Andrea, et al. "Internet of things for smart cities." IEEE Internet of Things Journal 1.1 (2014): 22-32.
Zühlke, Detlef. "SmartFactory–A Vision becomes Reality." IFAC Proceedings Volumes 42.4 (2009): 31-39.
Deloitte (2014) Industry 4.0 Challenges and solutions for the digital transformation and use of exponential technologies
Ignite – Manufacturing and Industry from: http://enterprise-iot.org/book/enterprise-iot/part-i/manufacturing/ |