博碩士論文 103521022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.219.209.144
姓名 蔡譽良(Yu-Liang Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適用於合成孔徑雷達訊號壓縮之可適性區塊量化器設計
(Design of Block Adaptive Quantizer for Synthetic Aperture Radar Signal Compression)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於影像解析度提升造成影像資料量增加,衛星與基地站之間的傳輸通道容量有限,本論文為了有效地降低合成孔徑雷達衛星的影像資料並保持良好的影像解析度,設計了可適性區塊量化器(Block Adaptive Quantizer, BAQ)來壓縮合成孔徑雷達的回波訊號,在量化系統中,訊號來源分為In-phase(I) 軸與Quadrature(Q) 軸,將兩軸的輸入訊號切割成不同區塊,並利用各區塊所擁有的平均能量,來選擇Lloyd-Max量化器的量化邊界值(Threshold)與量化代表值(Representative)進而得到最小的量化均方誤差(Mean Square Error, MSE),並使用MSE的數值配合著輸入訊號能量,計算出信噪比(Signal-to-Noise Ratio, SNR)來評估系統性能。在我們的BAQ系統中,可將ADC所輸入的訊號由8、10、12、14 bits壓縮成2、3、4、6或8 bits輸出,區塊大小可設定為128、256或是512,而變異數值切割有兩種模式,分別將變異數值區間平均分割成128與256等分。
在硬體設計上,原先用來儲存量化標準的記憶體在所需支援的輸出字元長度下太過龐大,我們進行了架構的改良,透過變異數增幅的設計,每個輸出位元數只需儲存一組量化邊界值,同時再搭配一儲存變異數增幅數值的記憶體,使得記憶體使用量大幅下降了百分之九十九以上。在比較器的部分我們混合了序向比較與平行比較的方式,來取代原先的比較器設計,可有效降低使用到的加減法器個數。最後,使用Virtex-7系列的FPGA進行硬體設計驗證,為了追求更高的操作頻率,藉由平行處理及管線化(Pipeline),操作頻率可達到500MHz左右,另一方面也使用了台積電所提供的40奈米製程進行實作,系統能操作在800MHz,而此系統功耗為11.8mW,由此可發現此系統有不錯的硬體使用效率。
摘要(英)
The resolution requirements of remote sensing images become higher and the channel capacity from satellites to the ground stations is limited. In order to effectively reduce the image data of synthetic aperture radar and maintain good image resolution, a block adaptive quantizer (BAQ) is needed to compress the echo signals. In the BAQ, the input signals of the in-phase (I) and quadrature (Q) axes are divided into blocks. The statistics of each block such as the average energy is calculated to derive the parameters of Lloyd-Max quantizer including the thresholds and the representatives of each quantized region. The Lloyd-Max quantizer achieves the smallest mean square error (MSE) of the Gaussian distributed signals. The signal-to-noise ratio (SNR) based on the average energy of the input signals and the MSE of the quantized output is then evaluated. In our BAQ system, it can compress the ADC signals of 8,10,12,14 bits into 2, 3, 4, 6 or 8 bits outputs. The block size can be set as 128, 256 or 512 complex samples, and the whole possible variance range can be divided equally into either 128 or 256 segments depending on the user requirements.
When the BAQ output wordlength is large, the memory for storing the Lloyd-Max quantizer thresholds is huge. Thus, we propose to use variance scaling technique to normalize the input signal energy. In this case, only one set of thresholds is needed with an extra memory for storage of variance scaling values. Over 98% memory sizes can be saved. In order to get the output of non-uniform Lloyd-Max quantizer, a hybrid comparator architecture is designed. The number of adders and subtracters is also reduced. The hardware is first realized by the FPGA of Virtex-7 series. To achieve a higher operating frequency, parallel processing and pipeline techniques are used. The operating frequency can reach 500MHz. The design is also implemented in 40nm CMOS technology and the operating frequency achieves up to 800MHz with power consumption of 11.8mW. Thus, our design has good hardware efficiency and low power consumption.
關鍵字(中) ★ 可適性區塊量化器 關鍵字(英)
論文目次
摘要 I
Abstract II
目錄 III
圖示目錄 VI
表格目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 論文組織 2
第二章 合成孔徑雷達(Synthetic Aperture Radar)所使用之相關遙測技術 3
2.1 合成孔徑雷達(SAR)介紹 3
2.2 合成孔徑雷達應用於衛星任務 4
2.2.1 Magellan 4
2.2.2 EnviSat 6
2.2.3 Terra SAR-X1 7
2.2.4 Sentinel-1 8
2.2.5 RISAT-1,RISAT-2 9
2.2.6 COSMO-SkyMed 11
2.2.7 RADARSAT 12
2.2.8 PAZSAR 13
2.2.9 SAR-Lupe 13
2.3 比較各衛星合成孔徑雷達之效能 14
2.4 合成孔徑雷達壓縮演算法 17
2.4.1 Block Adaptive Quantization (BAQ) 17
2.4.2 Flexible Block Adaptive Quantization (FBAQ) 18
2.4.3 Flexible Dynamic Block Adaptive Quantization (FDBAQ) 19
2.4.4 Entropy-Constrained Block Adaptive Quantization (ECBAQ) 19
第三章 Lloyd-Max演算法與可適性區塊量化系統 21
3.1 可適性區塊量化系統(Block Adaptive Quantizer)規格設定 21
3.2 量化(Quantizer) 22
3.2.1 Lloyd-Max Quantizer 24
3.2.2 量化邊界值與代表值 26
3.2.3 變異數值對量化的影響 32
3.3 可適性區塊量化系統(BAQ)流程介紹 35
3.3.1 能量累加(Accumulation) 36
3.3.2 變異數區段分割(Variance Segmentation) 36
3.3.3 量化邊界值產生(Threshold Generation) 37
3.3.4 量化比較(Comparison) 38
3.3.5 訊號解碼(Signal Decoding) 38
3.4 可適性區塊量化系統(BAQ)效能表現 39
3.4.1 區塊(Block Size)大小對可適性區塊量化系統之影響 40
3.4.2 Segmentation對可適性區塊量化系統之影響 41
第四章 硬體設計與實現 42
4.1 類比數位轉換器(ADC)對BAQ量化之影響 42
4.2 BAQ硬體架構解析 45
4.3 對BAQ進行定點數模擬(Fixed-point simulation) 46
4.3.1 平方器(Square)定點數模擬 46
4.3.2 累加器(Accumulator)定點數模擬 47
4.3.3 量化邊界值記憶體(Threshold Memory)定點數模擬 47
4.3.4 Delay Buffer與比較器(Comparator)定點數設定 49
4.4 BAQ架構修改 50
4.4.1 Scaling 區塊 51
4.4.2 記憶體使用量變化 52
4.4.3 乘法器(Multiplier)位元長度設定 55
4.5 BAQ硬體模擬 55
4.6 比較器架構比較 56
4.6.1 傳統比較器 56
4.6.2 BAQ比較器架構改良 57
4.6.2.1 BAQ階段一所使用之區域性比較器(Region Comparator)架構 58
4.6.2.2 BAQ階段二所使用混合式之比較器(Hybrid Comparator)架構 59
4.6.3 架構修改對加減法器數量之影響 59
4.7 系統參數設定改變對硬體精準度影響 60
4.8 硬體平行化加速 61
4.9 硬體實作 64
第五章 結論 69
參考文獻 70
參考文獻
[1] R. Kwok, and W. T. K. Johnson, ”Block Adaptive Quantization of Magellan SAR Data” in IEEE Transactions on Geoscience and remote sensing, vol. 27, no. 4, pp. 375-383, July 1989.
[2] ESR, “BEST- Basic Envisat SAR Toolbox” User manual, Version 4.0.2., March 2005.
[3] I. H. McLeod, and I. G. Cumming, “On-board encoding of the ENVISAT wave mode data,” IGARSS ‘95, vol. 3, pp. 1681-1683.
[4] "EnviSat - EoPortal Directory - Satellite Missions." EnviSat - EoPortal Directory - Satellite Missions. https://directory.eoportal.org/web/eoportal/satellite-missions/e/envisat
[5] Ian H. McLeod and et al. “ENVISAT ASAR Data Reduction: Impact on SAR Interferometry,” IEEE Trans. On Geoscience and remote sensing, vol. 36, no. 2, pp. 589-Mar. 1998.
[6] Y-L. Desnos, and et al. “ASAR – Envisat’s Advanced Synthetic Aperture Radar Building on ERS Achievements towards Future Earth Watch Missions,” ESA bulletin 102, May 2000.
[7] "TerraSAR-X - EoPortal Directory - Satellite Missions." TerraSAR-X- EoPortal Directory - Satellite Missions.
https://directory.eoportal.org/web/eoportal/satellite-missions/t/terrasar-x
[8] M. Younis and et al. “Determining the Optimum Compromise between SAR Data Compression and Radiometric Performance —An Approach Based on the Analysis of TerraSAR-X Data” IEEE IGARSS, 2008.
[9] E. Attema, and et al. “Flexible Dynamic Block Adaptive Quantization for Sentinel-1 SAR Missions” in IEEE Geoscience and remote sensing letter, vol. 7, no. 4, Oct. 2010.
[10] "Sentinel-1 - EoPortal Directory - Satellite Missions." Sentinel-1 - EoPortal Directory – Satellite Missions.
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-  sentinel-1
[11] R. Scheiber, and et al, “Sentinel-1 Imaging performance verification with TerraSAR-X” European Conference on SAR, pp.1-4, June 2010.
[12] Paul Snoeij, Evert Attema, Andrea Monti Guarnieri, Fabio Rocca “GMES Sentinel-1 FDBAQ Performance Analysis”
[13] T. Algra, “Data compression for operational SAR missions using Entropy-Constrained Block Adaptive Quantisation” NLR-TP-2002-218.
[14] U. Benz and et al. “A comparison of several algorithms for SAR Raw data compression” IEEE Transactions on geoscience and remote sensing, vol. 33, no. 5, Sept. 1995.
[15] "RISAT-1 - EoPortal Directory - Satellite Missions." RISAT-1 - EoPortal Directory - Satellite Missions. https://directory.eoportal.org/web/eoportal/satellite-missions/r/risat-1
[16] RISAT-2 - EoPortal Directory - Satellite Missions." RISAT-2 - EoPortal Directory - Satellite Missions. https://directory.eoportal.org/web/eoportal/satellite-missions/r/risat-2
[17] "COSMO-SkyMed - EoPortal Directory - Satellite Missions."
COSMO-SkyMed – EoPortal Directory - Satellite Missions. https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/cosmo-skymed
[18] "COSMO-SkyMed."Http://www.e-geos.it/index.html.2010.
.
[19] COSMO-SkyMed Mission, Italian Space Agency. "COSMO-SkyMed System Description & User Guide." Web. 15 July 2015.
[20] P. Lombardo, D. Pastina and et al. “A STUDY FOR COSMO-SKYMED SAR MULTI-BEAM OF SECOND GENERATION(MSAR-2G)”
[21]"RADARSAT-1."Canadian Space Agency Website. http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
[22]"RADARSAT-1 - EoPortal Directory - Satellite Missions." RADARSAT-1 - EoPortal Directory - Satellite Missions. Web. 15 July 2015.
[23]"RADARSAT-2 - EoPortal Directory - Satellite Missions." RADARSAT-2 - EoPortal Directory - Satellite Missions. Web. 15 July 2015.
[24]"RADARSAT-2 System and Mode Description."
http://www.dtic.mil/dtic/tr/fulltext/u2/a469927.pdf
[25] “PAZ SAR satellite mission of Spain”
https://directory.eoportal.org/web/eoportal/satellite-missions/p/paz
[26]“SAR-Lupe - EoPortal Directory - Satellite Missions. ” SAR-Lupe - EoPortal Directory - Satellite Missions. https://directory.eoportal.org/web/eoportal/satellite-missions/s/sar-lupe
[27] G. Triltzsch, “Challenges of automated processing of spaceborne high resolution SAR data,” International Asia-Pacific Conference on SAR, pp.1-2, Sept 2011.
[28] “PAZ LAUNCH CANCELLED, SPAIN IS BREAKING CONTRACT WITH ISC KOSMOTRAS” http://spaceflights.news/?p=40502
[29] “Block floating point for radar data” in IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no.1, pp.308-318, Jan 1999.
[30] “Overview of the TECSAR Satellite Hardware and Mosaic Mode” in IEEE Geoscience and Remote Sensing Letters, vol. 5, no.3, pp.423-426, July 2008.
[31] “Satellite and Airborne Microwave Sensors,” http://mrs.eecs.umich.edu/sensors.html
[32] A. Roth, “Scientific use of TerraSAR-X,” Proceedings of IGARSS, 2004, pp.1699-1702.
[33] M. Stangl, and et al. “TerraSAR-X technologies and first results,” IEE Proceedings Radar, Sonar, and Navigation, pp. 86-95, 2006.
[34] G.Kuduvalli, M.Dutkiewicz, I.Cumming, “Synthetic Aperture Radar Signal Data Compression Using Block Adaptive Quantization,” NASA. Goddard Space Flight Center, 1994 Science Information Management and Data Compression Workshop, pp. 43-57, Sept 1994
[35] E.Attema, and et al. “Sentinel-l Flexible Dynamic Block Adaptive Quantizer” in 2010 8th European Conference on Synthetic Aperture Radar (EUSAR), pp. 1-6, June 2010
[36] JOEL MAX, “Quantizing for minimum distortion” in IRE Transactions on Information Theory, vol.6, no.1, pp. 7-12, March 1960
[37] “The Gaussian Distribution,” National Curve Bank.
http://curvebank.calstatela.edu/gaussdist/gaussdist.htm
[38] Sheng-Lei, Zheng-TaoYe, Zhang-XuJing, “Design and Implementation of SAR Raw Data BAQ Based On FPGA” in 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR 2007. pp. 664-666, Nov 2007
[39] Pietro Guccione, Ciro Cafforio, Andrea Monti Guarnieri, “Optimal Block Quantization for SAR Data” in Radar Conference, 2010 IEEE, pp. 348-353, May 2010
[40] Wai-Chi Fang, “VLSI Processor Design of Real-time Data Compression for High-
Resolution Imaging Radar” in 1994 Seventh Annual IEEE International ASIC Conference and Exhibit, pp. 441-444, Sept 1994
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明