博碩士論文 103521095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.140.185.194
姓名 盧柏君(Po-Chun Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於系統級封裝之苯並環丁烯堆疊貫孔、無電鍍鎳金及金覆晶凸塊製程開發
(Development of BCB Stacked Via, Electroless Nickel/Gold Plating, and Gold Flip-Chip Bump Processes for System-in-Package Applications)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 系統級封裝的理念是將以不同製程技術實現的晶片及元件整合在同一個封裝中,以組成一個系統。覆晶鍵合是一種重要的系統級封裝技術,用於將晶片與載板以長度很短的覆晶凸塊來連接;與傳統的鎊線相較,覆晶凸塊具有低寄生電感的優點,適合高頻應用。在載板端,本論文開發了苯並環丁烯(BCB)堆疊貫孔製程及電鍍金覆晶凸塊製程。在晶片端,我們實作了無電鍍鎳金於晶片接腳。最後,我們透過金-金熱壓合,將晶片覆晶鍵合於載板上。
BCB具低介電係數、高崩潰電壓等特性,相當適合用作覆晶鍵合載板端的介電材料。為實現以BCB為介質的微帶線結構,本論文開發了BCB堆疊貫孔技術。我們將BCB旋佈、曝光、顯影及烘烤固化這些步驟重覆三次,來分層堆疊獨立製作每層的貫孔,成功實現貫孔於總厚度約為28 μm的BCB介電層。我們使用此堆疊貫孔技術,實現以BCB為介電層、金為金屬層的微帶線架構。量測結果顯示,微帶線在頻率為20 GHz時,其單位線長植入損耗皆小於0.15 dB/mm。而用實作尺寸代入電磁模擬軟體模擬,與量測結果擬合,可推論BCB介電常數為2.65、損耗正切為0.002。另外,透過量測可知試片上有部分微帶線製作失敗;貫孔形狀不均應為失敗的原因。未來貫孔可改成乾蝕刻方式製作,以得到均勻的貫孔形狀,使貫孔良率提升。
在覆晶鍵合技術實現方面,我們把以TSMC 0.18-μm CMOS製程實現之50-Ω微帶線,透過覆晶方式與藍寶石載板上的共平面波導傳輸線連接。我們以無電鍍鎳金技術在CMOS晶片的鋁墊上依序沉積鎳及金,而載板上約12 μm高的覆晶凸塊則以電鍍金方式實現,最後以熱壓合方式將晶片鍵合至載板上。量測結果顯示,在10 GHz時,覆晶後的傳輸線返回損耗仍大於20 dB。扣除晶片上微帶線及載板上共平面波導線的損耗,我們可計算出覆晶單側接點於10 GHz時總共貢獻約0.04 dB的植入損耗。
在本論文中,我們開發了有效製作BCB堆疊貫孔的製程,並藉以實現了以BCB為介電層的低損耗微帶線。另外,我們實作了可於0.18-μm CMOS晶片接腳層無電鍍鎳金之製程,並開發於藍寶石載板上之電鍍金覆晶凸塊,最後成功地以金-金熱壓合方法鍵合晶片與載板;所實現之覆晶接點在微波頻段具低植入損耗。未來我們可結合這些製程,完成載板以BCB為微帶線介電層之系統級封裝模組。
摘要(英) The concept of System-in-Package (SiP) is to integrate chips and components implemented by different process technologies into one package and form a system. Flip-chip bonding is an important SiP technology, which is used to connect the chip and carrier substrate with short flip-chip bumps. Compared with the conventional bond wires, flip-chip bumps possess lower parasitic inductance and are more adequate for high-frequency applications. In this work, on the carrier-substrate, benzocyclobutene (BCB) stacked via and electroplated gold flip-chip bump processes are developed. On the chip side, the technique of electroless nickel-gold plating on the chip pads is implemented. Finally, the chip is flip-chip bonded onto the carrier by gold-gold thermo-compressive bonding.
BCB is a dielectric material with low dielectric constant and high breakdown voltage, making it suitable for dielectric layers on flip-chip carrier substrates. To realize microstrip structure with BCB as the dielectric layer, we develop the BCB stacked via process. Spin-coating, exposure, developing, and curing of BCB are repeated three times to fabricate via holes on the three stacked BCB layers. Vias are successfully fabricated on the BCB dielectric layer, which has a total thickness of about 28 μm. The stacked via process is then used in the fabrication of microstrip lines with BCB as its dielectric and gold as its metal. The measurement results of the microstrip lines show that the insertion loss per unit length at 20 GHz is less than 0.15 dB/mm. By fitting the full-wave simulation results with the measurement results, it is found that the dielectric constant and loss tangent of the BCB are 2.65 and 0.002, respectively. Examining the measurement results, we find that the fabrication of some of the transmission line has failed. We believe that the failure is due to that the shape of the fabricated BCB vias is not uniform as its originally designed. In the future, the BCB vias can be fabricated using dry etching to obtain uniform via shapes and improve the yield.
On the implementation of flip-chip bonding, we connect chips that contain 50-Ω microstrip lines realized using TSMC 0.18-μm CMOS technology with coplanar waveguide (CPW) transmission lines on a sapphire carrier substrate by flip-chip bumps. We subsequently deposit nickel and gold on the aluminum pads of the CMOS chips by electroless plating. On the carrier substrate, the flip-chip bumps with about 12-μm height are fabricated using gold electroplating. The chips are then flip-chip bonded onto the carrier by gold-gold thermocompressive bonding. Measurement results show that, at 10 GHz, the return loss of the flip-chip bonded transmission line is still greater than 20 dB. By subtracting the losses of the microstrip on the chip and CPW lines on the carrier, it is calculated that the insertion loss contributed by flip-chip contact at single side is 0.04 dB at 10 GHz.
In this thesis, we develop an effective fabrication process for making stacked vias on BCB and successfully use the process to realize low-loss microstrip lines with BCB as the dielectric layer. In addition, we implement an electroless plating process to deposit nickel/gold on pads of CMOS chips. We also develop an electroplating process to fabricate gold flip-chip bumps on sapphire carrier substrates. Finally, we demonstrate the gold-gold thermocompressive bonding to connect the chips and carrier substrates, realizing low-loss flip-chip contacts at microwave frequencies. In the future, we can combine these processes to fabricate SiP modules on carriers with BCB as the dielectric layer.
關鍵字(中) ★ 苯並環丁烯
★ 覆晶鍵合
★ 系統及封裝
★ 無電鍍鎳金
關鍵字(英)
論文目次 國 立 中 央 大 學 I
摘要 VI
Abstract VIII
誌謝 X
目錄 XII
圖目錄 XIV
表目錄 XVII
第一章 緒論 1
1–1 研究動機 1
1–2 苯並環丁烯特性簡介 2
1–3 覆晶技術介紹 3
1–4 章節介紹 4
第二章 BCB堆疊貫孔技術發展 5
2–1 簡介 5
2–2 BCB堆疊貫孔測試 7
2–3 BCB微帶線光罩設計 10
2–4 BCB 微帶線製作流程 13
2–4–1 參考地之製作流程 13
2–4–2 介電層製作 16
2–4–3 氮化矽接合層之沉積與開洞製作流程 19
2–4–4 接腳層製作流程 21
2–5 BCB 微帶線之應用量測結果與討論 29
第三章 無電鍍及覆晶鍵合製程發展 37
3–1 無電鍍及覆晶簡介 37
3–2 晶片無電鍍製作流程 39
3–3 覆晶載板製作流程 47
3–3–1 覆晶載板光罩設計 47
3–3–2 載板製作流程 51
3–4 覆晶流程 58
3–5 覆晶量測與討論 62
第四章 結論 70
4–1 結果與討論 70
4–2 未來研究方向 72
參考文獻 73
附錄 75
附錄A BCB微帶線製作 75
附錄B 覆晶載板製作 84
附錄C 無電鍍晶片流程 88

參考文獻 [1] M.-H. Li, “Three dimensions interconnect investigation of system in package,” Master dissertation, National University of Kaohsiung, 2011.
[2] Y.-C. Hsu, H.-K. Chiou, H.-K. Chen, T.-Y. Lin, D.-C. Chang, and Y.-Z. Juang, “Low phase noise and low power consumptions VCOs using CMOS and IPD technologies,” IEEE Trans. Compon., Package Manuf., vol. 1, no. 5, pp. 673–680, May 2011.
[3] C.-T. Yu, “An integrated passive device process featuring ferroelectric varactors and its application in the fabrication of a microwave phase shifter,” Master dissertation, National Central University, 2015.
[4] H.-C. Lu, C.-C. Kuo, P.-A. Lin, C.-F. Tai, Y.-L. Chang, Y.-S. Jiang, J.-H. Tsai, Y.-M. Hsin, and H. Wang, “Flip-chip-assembled W-band CMOS chip modules on ceramic integrated passive device with transition compensation for millimeter-wave system-in-package integration,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 766–777, Mar. 2012.
[5] C.-J. Wu, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” Master dissertation, National Central University, 2009.
[6] C.-H. Li, T.-Y. Chao, C.-W. Lai, W.-C. Chen, C.-L. Ko, C.-N. Kuo, Y.-T. Cheng, M.-C. Kuo, D.-C. Chang, “A 37.5-mW 8-dBm-EIRP 15.5°-HPBW 338-GHz terahertz transmitter using SoP heterogeneous system integration,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 2, pp. 470–480, Feb. 2015.
[7] Advanced packaging polymers, DOW Corp., Nov. 2014
[8] A. Brenner and G. Riddell, “Nickel plating on steel by chemical reduction,” J. Res. Nat. Bur. Std., 37, 31 (1946).
[9] M. Schlesinger and M. Paunovic, Modern Electroplating, 4th ed., John Wiley & Sons, Inc., New York, 2000 (Chapter 18).
[10] T.-Y. Chao, C.-H. Li, Y.-C. Chen, H.-Y. Chen, Y.-T. Cheng, and C.-N. Kuo, “An interconnecting technology for RF MEMS heterogeneous chip integration,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 928–938, Apr. 2010.
[11] S. H. Abdullah, I. Ahmad, and A. Jalar, “The effect of number of zincation in electroless nickel immersion gold (ENIG) under bump metallurgy (UBM) on reliability in microelectronics packaging,” Proc. 25th Int. Conf. Microelectron, Belgrade, 2006, pp. 567–570.
[12] C.-F. Luk, Y.-C. Chan, and K.-C. Hung, “Development of gold to gold interconnection flip chip bonding for chip on suspension assemblies,” Proc. 51st Electron. Comp. Tech. Conf, Orlando, FL, 2001, pp. 1040–1044.

[13] K. Zeng, R. Stierman, D. Abbott, M. Murtuza, “The root cause of black pad failure of solder joints with electroless Ni/immersion gold plating,” Journal of the Minerals, vol. 58, no. 6, pp. 75–79, Jun. 2006
[14] R. Parkinson, “Properties and applications of electroless nickel deposits,” Nickel Development Institute, Technical Series No. 10081, Feb. 1997.
[15] Saint-Gobain Crystals, Saint-Gobain Ceramics & Plastics, Inc., 2004
[16] C.-H. Lin, “Ku-band MIC low-noise amplifiers,” Master dissertation, National Central University, 2007.
[17] P.-H. Chuang, “Integrated thin-film filters in C-band and Ka-band design and flip chip technology,” Master dissertation, National Central University, 2004.
[18] C.-C. Huang, F.-Y. Lo, and W.-C. Lin, “Characterization of flip-chip interconnection for high speed digital transmission,” 2015 Asia-Pacific Symp. Electromagn. Compat., Taipei, 2015, pp. 498–501.
[19] S. Song, Y. Kim, J. Maeng, H. Lee, Y. Kwon, and K.-S. Seo, “A millimeter-wave system-on-package technology using a thin-film substrate with a flip chip interconnection,” IEEE Trans. Adv. Packaging., vol. 32, no. 1, pp. 101–108, Feb. 2009.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2017-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明