博碩士論文 103522032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.21.55.178
姓名 郭仲仁(Zhong-Ren Guo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 自動跟隨前導者軌跡行進的自走車
(Automatic following navigation vehicle)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自走車在應用上相對於人為駕駛有許多的潛在優勢,例如:可增加乘車空間;避免行車距離太短、駕駛者疲累等等因素造成的交通事故,而自動跟隨前導著軌跡的自走車,對於貨物的運送、區域的導覽都有相當多的應用。本研究藉由一個自主控制的系統,減少許多使用者的負擔;而本系統除了自走車本身外,僅需要一台電腦及PTZ相機與一塊arduino控制板,就可以完成跟隨前導者軌跡行進的動作。
論文架構主要分成三個部分,一是前導者的偵測及辨識、二是前導者的方位估計及追蹤、三是輪椅控制。前導者偵測是以前導者的梯度方向分佈圖 (histograms of oriented gradients, HOG) 做為特徵,經由支持向量機 (support vector machine, SVM) 分類判別是否為行人的物件,再將已經判定為行人的物件取色彩分佈圖來做為特徵辨識是否為前導者。第二部分的前導者方位估計,是透過相機取得前導者與自走車之間的相對座標,加上輪椅在世界座標中的位置,來取得前導者的世界座標。第三部份實作使用筆記型電腦搭載Intel® Pentium® CoreTM i7-5700HQ 2.70GHz中央處理器及伍氏科技的電動輪椅 Mambo 513和Logitech 的 QuickCam® Sphere AF PTZ 彩色相機和Arduino uno 控制板,透過電腦計算出輪椅該前進的距離傳送給 Arduino 控制板以電壓的方式輸出達到控制輪椅前進的效果。
在實驗分析中,我們拍攝校園內街道影片及實驗大樓大廳;透過行人偵測帶擷取垂直邊可達到99%將前導者取出誤判率約為49%,配合HOG特徵及SVM分類器偵測率約為85%誤判率約為0.1%。輪椅移動控制約可達到90%正確率,整體前導者軌跡重現平均誤差在20公分以內。系統在電腦上運算每秒約可以執行15張影像的處理速度。
摘要(英) Self-propelled vehicles with respect to the applications of artificially driving have many potential advantages, such as: increase drive space; short driving distance to avoid traffic accidents, driver fatigue caused by, among other factors, and automatically follow the trajectory of the leading self-propelled car navigation for transportation, cargo area has a considerable number of applications. In this study, by an autonomous control system, reduce the number of user′s burden; and self-propelled vehicle in addition to the system itself, only need a computer with an arduino and PTZ camera control panel, you can follow the complete trajectory of predecessor action.
Paper architecture is divided into three parts, detect and identify one predecessor, the second is the leader′s direction estimation and tracking, three are wheelchair control. Predecessor gradient direction is detected by the leading distribution (histograms of oriented gradients, HOG) as a feature, via support vector machines (support vector machine, SVM) classification determines whether the object is a pedestrian, and then has been determined for pedestrians the object is to take color maps do feature recognition whether the predecessor. The second part of the predecessor bearing estimation, is to obtain the relative coordinates predecessor and between self-propelled vehicle through the camera, plus a wheelchair position in the world coordinates to get the world′s leading coordinate. The third part of the implementation using a laptop equipped with Intel® Pentium® CoreTM i7-5700HQ 2.70GHz CPU and Wu′s technology electric wheelchairs Mambo 513 and Logitech′s QuickCam® Sphere AF PTZ color camera and Arduino uno control panel, through the computer calculates the distance traveled wheelchair delivered to Arduino control board with voltage mode output to effect control the wheelchair forward.
In the experimental analysis, we shot the film on campus streets and laboratory building lobby; pedestrian detection by capturing with vertical sides can reach 99% of the predecessor remove false positive rate of about 49%, with HOG features and SVM classifier detection rate about 85% false positive rate of about 0.1%. Wheelchair movement control can reach about 90% accuracy, the overall trajectory reproduce predecessor average error of less than 20 cm. System on the computer can perform operations per second processing speed of about 15 images.
關鍵字(中) ★ 自走車
★ 跟隨
關鍵字(英) ★ vehicle
★ following
論文目次 摘要 i
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 系統概述 1
1.3 論文架構 4
第二章 相關研究 5
2.1 ROI選取 5
2.2輪廓模板比對 7
2.3特徵選取 10
2.4分類器 10
第三章 疑似前導者物件篩選 13
3.1行人偵測帶 13
3.2前景物選取 15
3.3候選物件視窗 16
第四章 前導者確認 18
4.1梯度方向分佈圖 18
4.1.1HOG特徵計算方式 18
4.1.2加速運算 21
4.2 SVM分類器 23
4.2.1 SVM簡介 23
4.2.2訓練樣本 25
4.3色彩分佈圖 27
第五章 單眼視覺定位系統 28
5.1相機參數校正 29
5.1.1相機模型 29
5.1.2相機參數校正方法 31
5.1.3求解內外部參數 32
5.2前導者追蹤 33
5.2.1軌跡重現 34
5.2.2前導者距離估計 35
第六章 實驗結果與討論 37
6.1實驗設備與架設環境 37
6.2實驗與結果展示 38
6.3不同環境下的前導者偵測準確率 44
6.4自走車移動的準確率 45
6.5討論 47
第七章結論及未來展望 49
參考文獻 50
參考文獻 [1] Ahonen, T., A. Hadid, and M. Pietikainen, ′′Face description with local binary patterns: application to face recognition,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.28, no.12, pp.2037-2041, 2006.
[2] Alonso, I. P., D. F. Llorca, and M. Á. Sotelo, ′′Combination of feature extraction methods for SVM pedestrian detection,′′ IEEE Trans. Intelligent Transportation System, vol.8, no.2, pp.292-307, 2007.
[3] An, T.-K. and M.-H. Kim, ′′A new diverse adaboost classifier,′′ in Proc. Int. Conf. Artificial Intelligence and Computational Intelligence, Sanya, China, Oct.23-24, 2010, pp.359-363.
[4] Andreone, L., F. Bellotti, A. D. Gloria, and R. Lauletta, ′′SVM-based pedestrian recognition on near-infrared images,′′ in Proc. 4th IEEE Int. Symp. on Image and Signal Processing and Analysis, Torino, Italy, Sep.15-17, 2005, pp.274-278.
[5] Bertozzi, M., A. Broggi, R. Chapuis, F. Chausse, A. Fascioli, and A. Tibaldi, ′′Shape-based pedestrian detection and localization,′′ in Proc. IEEE Int. Conf. Intelligent Transportation Systems, Shanghai, China, Oct.12-15, 2003, pp.328-333.
[6] Bertozzi, M., A. Broggi, A. Fascioli, T. Graf, and M.-M. Meinecke, ′′Pedestrian detection for driver assistance using multiresolution infrared vision,′′ IEEE Trans. Vehicular Technology, vol.53, no.6, pp.1666-1678, 2004.
[7] Bertozzi, M., A. Broggi, A. Lasagni, and M. D. Rose, ′′Infrared stereo vision-based pedestrian detection,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.24-29.
[8] Broggi, A., R. I. Fedriga, and A. Tagliati, ′′Pedestrian detection on moving vehicle: an investigation about near infra-red images,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Tokyo, Japan, Jun.13-15, 2006, pp.431-436.
[9] Broggi, A., P. Cerri, S. Ghidoni, P. Grisleri, and H. G. Jung, ′′A new approach to urban pedestrian detection for automatic braking,′′ IEEE Trans. Intelligent Transportation Systems, vol.10, no.4, pp.594-605, 2009.
[10] Brown, D. C., “Close-range camera calibration,” Photogrammetric Engineering, vol.37, no.8, pp.855-866, 1971.
[11] Burges, C. J. C., "A tutorial on support vector machines for pattern recognition," Data Mining Knowledge Discovery, vol.2, no.2, pp.121-167, 1998.
[12] Cao, X.-B., H. Qiao, and J. Keane, ′′A low-cost pedestrian-detection system with a single optical camera,′′ IEEE Trans. Intelligent Transportation Systems, vol.9, no.1, pp.58-67, 2008.
[13] Dalal, N. and B. Triggs, ′′Histograms of oriented gradients for human detection,′′ in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Diego, CA, June 20-26, 2005, pp.886-893.
[14] Enzweiler, M. and D. M. Gavrila, ′′Monocular pedestrian detection: survey and experiments,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.12, pp.2179-2195, 2008.
[15] Fang, Y., K. Yamada, Y. Ninomiya, and I. Masaki, ′′A shape independent method for pedestrian detection with far-infrared images,′′ IEEE Trans. Vehicular Technology, vol.53, no.6, pp.1679-1697, 2004.
[16] Faig, W., “Calibration of close-range photogrammetry systems: Mathematical formulation,” Photogrammetric Engineering and Remote Sensing, vol.41, no.12, pp.1479-1486, 1975.
[17] Fardi, B., U. Schuenert, and G. Wanielik, ′′Shape and motion-based pedestrian detection in infrared images: a multisensor approach,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.18-23.
[18] Faugeras, O., T. Luong, and S. Maybank, “Camera self-calibration: Theory and experiments,” in Proc. of 2nd European Conf. on Computer Vision, Santa Margherita Ligure, Italy, May 19-22, 1992, vol.588, pp.321-334.
[19] Freund, Y. and R. E. Schapire, ′′A decision-theoretic generalization of on-line learning and application to boosting,′′ Int. Journal of Computer and System Sciences, vol.55, no.1, pp.119-139, 1997.
[20] Gavrila, D. M., ′′Pedestrian detection from a moving vehicle,′′ in Proc. 5th European Conf. Computer Vision, Dublin, Ireland, Jun.26-Jul.1, 2000, pp.37-49.
[21] Gavrila, D. M. and S. Munder, ′′Multi-cue pedestrian detection and tracking from a moving vehicle, ′′ Int. Journal of Computer Vision, vol.73, no.1, pp.41-59, 2007.
[22] Gennery, D., “Stereo-camera calibration,” in Proc. of 10th Image Understanding Workshop, Los Angeles, CA, Nov.7-8, 1979, pp.101-108.
[23] Geronimo, D., A. D. Sappa, A. Lopez, and D. Ponsa, ′′Adaptive image sampling and windows classification for on-board pedestrian detection,′′ in Proc. IEEE 5th Int. Conf. Computer Vision, Bielefeld, Germany, Mar.21-24, 2007, pp.1-10.
[24] Geronimo, D., A. M. Lopez, A. D. Sappa, and T. Graf, ′′Survey of pedestrian detection for advanced driver assistance systems,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.32, no.7, pp.1239-1258, 2010.
[25] Hartley, R. and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, 2004.
[26] Hussain, M., S.-K. Wajjd, A. Elzaart, and M. Berbar, "A comparison of SVM kernel functions for breast cancer detection," in Proc. IEEE Int. Conf. Computer Graphics, Imaging and Visualization, Singapore, Aug.17-19, 2011, pp.145-150.
[27] Linzmeier, D. T., M. Skutek, M. Mekhaiel, and K. Dietmayer, ′′A pedestrian detection system based on thermopile and radar sensor data fusion,′′ in Proc. IEEE Conf. Information Fusion, Philadelphia, PA, Jul.25-28, 2005, pp.1272-1279.
[28] Ma, G., D. Muller, S.-B. park, S. Muller-Schneiders, and A. Kummert, ′′pedestrian detection using a single monochrome camera,′′ IET Intelligent Transport Systems, vol.3, pp.42-56, March 2009.
[29] Ma, G., S.-B. Park, A. Ioffe, S.-M. Schneiders, and A. Kummert, "A real time object detection approach applied to reliable pedestrian detection," in Proc. IEEE Conf. Intelligent Vehicles Symp., Istanbul, Turkey, Jun.13-15, 2007, pp.755-760.
[30] Mahalingam, G. and C. Kambhamettu, ′′Face verification with aging using adaboost and local binary patterns,′′ in Proc. India Conf. Graphics and Image Processing, Chennai, India, Dec.12-15, 2010, pp.101-108.
[31] Mahlisch, M., M. Oberlander, O. Lohlein, D. M. Gavrila, and W. Ritter, ′′A multiple detector approach to low-resolution FIR pedestrian recognition,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Las Vegas, Nevada, Jun.6-8, 2005, pp.325-330.
[32] Mohan, A., C. Papageorgiou, and T. Poggio, ′′Example-based object detection in images by components,′′ IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.4, pp.349-361, 2001.
[33] Nishida, K. and T. Kurita, ′′Boosting soft-margin SVM with feature selection for pedestrian detection,′′ in Proc. Int. Workshop on Multiple Classifier Systems, Seaside, CA, Jun.13-15, 2005, pp.22-31.
[34] Papageorgiou, C. and T. Poggio, ′′A trainable system for object detection,′′ Int. Journal of Computer Vision, vol.31, no.1, pp.15-33, 2000.
[35] Shashua, A., Y. Gdalyahu, and G. Hayun, "Pedestrian detection for driving assistance systems: single-frame classification and system level performance," in Proc. IEEE Conf. Intelligent Vehicles Symp., Parme, Italy, Jun.14-17, 2004, pp.1-6.
[36] Suard, F., A. Rakotomamonjy, A. Bensrhair, and A. Broggi, ′′Pedestrian detection using infrared images and histograms of oriented gradients,′′ in Proc. IEEE Conf. Intelligent Vehicles Symp., Tokyo, Japan, June 13-15, 2004, pp.206-212.
[37] Sun, H., C. Hua, and Y. Luo, ′′A multi-stage classifier based algorithm of pedestrian detection in night with a near infrared camera in a moving car,′′ in Proc. 3rd IEEE Int. Conf. Image and Graphics, Beijing, China, June 27-30, 2004, pp.120-123.
[38] Vapnik, V. N., The Nature of Statistical Learning Theory, Springer, Berlin, 1995.
[39] Viola, P. and M. Jones, ′′Robust real-time face detection,′′ Int. Journal of Computer Vision, vol.57, no.2, pp.137-154, 2004.
[40] Viola, P., M. Jones, and D. Snow, ′′Detecting pedestrians using patterns of motion and appearance,′′ Int. Journal of Computer Vision, vol.63, no.2, pp.153-161, 2005.
[41] Wang, X., T. X. Han, and S. Yan, "An HOG-LBP human detector with partial occlusion handling," in Proc. IEEE 12th Int. Conf. Computer Vision, Kyoto, Japan, Sep.29-Oct.2, 2009, pp.32-39.
[42] Wei, G. and S. Ma, “A complete two-plane camera calibration method and experimental comparisons,” in Proc. of 4th Int. Conf. on Computer Vision, Berlin, Germany, May 11-14, 1993, pp.439-446.
[43] Weng, J., P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.14, no.10, pp.965-980, 1992.
[44] Wu, P., X.-B. Cao, Y.-W. Xu, and H. Qiao, ′′Representative template set generation method for pedestrian detection,′′ in Proc. 5th IEEE Int. Conf. Fuzzy Systems and Knowledge Discovery, Jinan, China, Oct.18-20, 2008, pp.101-105.
[45] Zhu, Q., A. Shai, M.-C. Yeh, and K.-T. Cheng, "Fast human detection using a cascade of histograms of oriented gradients," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, June 17-22, 2006, pp.1491-1498.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2016-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明