![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:21 、訪客IP:13.59.14.52
姓名 李佩臻(Pei-Chen Lee) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱
(Performance Study on Tree-based Classification Algorithms for Smartphone Indoor/outdoor Detection)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 近年來,室內外定位偵測發展蓬勃,已經成為現今不可或缺的技術之一,並具有許多潛在的應用。舉例來說,可以透過定位使用者是否有從室外環境進入到室內環境, 以便協助使用者手機自動關閉GPS功能來節省能源,或是讓使用者手機自動切換靜音模式。本論文利用tree-based learning 演算法 (i.e., decision trees, boosting, bagging, and random forest) 來分類室內與室外定位的資料。並使用10-fold cross validation來驗證分類結果,以避免分類結果有overfitting的問題發生。最後比較各個tree-based learning 演算法分類結果的性能,並找出其中最適合分類室內外定位資料的tree-based learning演算法。在我們實驗中,雖然分類結果普遍偏高,但其中以boosting的演算法為最佳。Boosting在室內外定位資料分析有高達99%以上的正確率。 摘要(英) The indoor/outdoor detection for wireless device has many potential applications. For instance, when a device is detected to enter the indoor environment, it can turn off the GPS chip to save energy. In this thesis, the indoor/outdoor detection is treated as the supervised learning problem. The tree-based learning algorithms (i.e., decision trees, boosting, bagging, and random forest) are built from the training dataset and used to classify test dataset. In addition, the 10-fold cross over is used with the algorithms to mitigate the issue of overfitting. The performance of each algorithm are compared to identify the algorithm most appropriate for the indoor/outdoor detection. Although the final performance of each algorithm seems to be high, boosting provides the best accuracy (99%) for indoor/outdoor detection. 關鍵字(中) ★ 室內外定位
★ 機器學習
★ 手機感測器關鍵字(英) ★ indoor/outdoor detection
★ machine learning
★ IMU論文目次 1 Introduction 1
2 RelatedWork 3
2.1 Outdoor positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Indoor positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Indoor/Outdoor detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Preliminary 7
3.1 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 K-fold cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Comparison of the tree-based algorithms 10
4.1 Dataset preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Classication algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.4 Random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Performance 20
5.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Creating the training and test dataset . . . . . . . . . . . . . . . . . . . . . 20
5.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Conclusions 28
Reference 29參考文獻 [1] Google play. https://play.google.com/store.
[2] R. https://www.r-project.org/.
[3] Androsensor, 2015. https://play.google.com/store/apps/details?id=com. fivasim.androsensor&hl=zh_TW.
[4] A. Amini, R. M. Vaghe, J. M. de la Garza, and R. M. Buehrer. Improving gps-based vehicle positioning for intelligent transportation systems. In 2014 IEEE Intelligent Vehicles Symposium Proceedings, pages 1023{1029, 2014.
[5] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle lters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, pages 174-188, 2002.
[6] Guang-Huan Hu, Jia-Jun Bu, and Chun Chen. A novel bayesian framework for indoor-outdoor image classication. In Machine Learning and Cybernetics, 2003 International Conference on, pages 3028{3032 Vol.5, 2003.
[7] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. Spot: Decimeter level localization using wifi. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM ′15, pages 269{282, 2015.
[8] Brett Lantz. Machine Learning with R Patterns, Secind Edition. Packt Publishing,2015.
[9] J. Li and M. Wu. A positioning algorithm of agps. In 2009 International Conference on Signal Processing Systems, pages 385-388, 2009.
[10] Xingchuan Liu, Qingshan Man, Henghui Lu, and Xiaokang Lin. Wi-/marg/gps integrated system for seamless mobile positioning. In 2013 IEEE Wireless Communications and Networking Conference (WCNC), pages 2323{2328, 2013.
[11] A. Mai, Z. Wei, and M. Gao. An access control and positioning security management system based on rd. In 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, volume 2, pages 537{540, 2015.
[12] Carlos Medina, Jos Carlos Segura, and ngel De la Torre. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter
accuracy. Sensors, 13, 2013.
[13] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[14] Schmidt G T and Brock L D. General questions on Kalman ltering in navigation systems. M.I.T. Instrumentation Laboratory, 1970.
[15] Sheng-Cheng Yeh, Wu-Hsiao Hsu, Ming-Yang Su, Ching-Hui Chen, and Ko-Hung Liu. A study on outdoor positioning technology using gps and wi networks. In Networking, Sensing and Control, 2009. ICNSC ′09. International Conference on,
pages 597{601, 2009.
[16] Jiao Yu, Wei-Shinn Ku, Min-Te Sun, and Hua Lu. An RFID and particle lter-based indoor spatial query evaluation system. In Joint 2013 EDBT/ICDT Conferences, EDBT ′13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 263-274, 2013.
[17] X. Yunqiang, Z. Yanshun, W. Z. Qing, and L. Ming. Research for pedestrian navigation positioning method based on mems sensors. In Control Conference (CCC), 2015 34th Chinese, pages 5315-5318, 2015.指導教授 孫敏德(Min-Te Sun) 審核日期 2016-7-27 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare