博碩士論文 103522086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.16.50.172
姓名 林美伶(Mei-Ling Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以深度卷積神經網路做人臉辨識
(Face Recognition using A Deep Convolutional Neural Network)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來人臉偵測 (face detection) 與人臉辨識 (face recognition) 技術被廣泛地應用在各種實務或商業娛樂系統上,像是門禁系統、監控系統、身分認證的登入系統、社群網站等。然而,人臉偵測率與人臉辨識率常常受到許多因素影響,包含光照環境的不同、表情的不同、臉部旋轉、及有遮蔽物的情形等。
本論文透過找出人臉的多尺度區域二元模式特徵 (Multi-scale Block Local Binary Pattern, MB-LBP) 來做人臉偵測,克服光線變化、模糊與雜訊,加入多角度人臉影像來訓練分類器,使得可以克服某些程度之內的臉部旋轉。並結合深度卷積神經網路 (deep convolutional neural network) 技術,用我們自己蒐集的多種光源、角度、清晰度變化的人臉資料庫,透過多層網路神經元架構來訓練學習人臉辨識,且與傳統的辨識方法做比較。
在實驗分析中,我們以自己拍攝的影片做測試 (包含不同光線變化,不同角度的人臉影像)。偵測方面,依照不同參數的調整,偵測率可以達到 91% ~ 97%, 誤判率 4 × 10^(-7), 並比較不同參數搭配的結果。辨識方面,與傳統方法相比,利用深度卷積神經網路方法訓練 12 個類別 (分別為 1 ~ 10 類、其他人和非人臉)的人臉辨識模型,測試樣本 881 個,辨識正確率可達到 94.3%。
摘要(英) In recent years, face recognition and face detection techniques are widely used in various applications, such as access control systems, surveillance system, login system, and community websites etc. However, there are some factors that affect the recognition performance like different lighting conditions, facial expression, face rotation, and occlusion by other objects.
In this paper, we use Multi-scale Block Local Binary Pattern (MB-LBP) to detect face. MB-LBP can overcome different lighting conditions, blurred and noise images. We add multi-angle face images to train the detection classifier, so that classifier can overcome some degree of face rotations. We collect face databases with various lighting conditions, angles, multi-resolution and use multi-layer neural network to train the face recognition system. We compare traditional recognition method with deep convolutional neural network (CNN).
In the experimental analysis, we do test with the videos which we shot, including different lighting conditions and different face angles. In the detection section, according to different parameters, the detection rate can reach up to 91% ~ 97% and about 4 × 10^(-7) false positive rate. We compare the results with different parameters. In the recognition section, comparing with traditional methods, we use 12 classes, including 10 persons, other men, and not men, to train deep convolutional neural network model for face recognition. In the case of 881 test samples, the recognition rate reach to 94.3%.
關鍵字(中) ★ 深度卷積神經網路
★ 人臉辨識
★ 人臉偵測
★ 多尺度區域二元模式
★ 適應光線變化的特徵
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 系統架構 2
1.3 論文架構 6
第二章 相關研究 7
2.1 人臉偵測 7
2.2 人臉辨識 11
第三章 人臉偵測 17
3.1 擷取人臉特徵 17
3.2 人臉偵測 25
3.3 人臉偵測的訓練 27
第四章 人臉辨識 30
4.1 區域二元模式人臉辨識 30
4.2 深度卷積神經網路 32
4.3 深度卷積神經網路架構 38
第五章 實驗結果 43
5.1 實驗設備介紹 43
5.2 人臉偵測實驗與結果展示 43
5.3 人臉辨識實驗與結果展示 47
第六章 結論及未來展望 55
參考文獻 56
附錄 61
參考文獻 [1] Ahonen, T., A. Hadid, and M. Pietikainen, "Face description with local binary patterns: Application to face recognition," IEEE Tran. on Pattern Analysis and Machine Intelligence, vol.28, no.12, pp.2037-2041, 2006.
[2] Bartlett, M. S., J. R. Movellan, and T. J. Sejnowski, "Face recognition by independent component analysis," IEEE Trans. on Neural Networks, vol.13, no.6, pp.1450-1464, 2002.
[3] Belhumeur, P. N., J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. fisherfaces: Recognition using class specific linear projection," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.19, no.7, pp.711-720, 1997.
[4] Chen, D., S. Ren, Y. Wei, X. Cao, and J. Sun, "Joint cascade face detection and alignment," in Proc. European Conf. on Computer Vision (ECCV), Zurich, Switzerland, Sep.6-12, 2014, pp.109-122.
[5] Dreuw, P., P. Steingrube, H. Hanselmann, and H. Ney, "SURF-face: Face recognition under viewpoint consistency constraints," in Proc. British Machine Vision Conf., London, UK, Sep.7-10, 2009, pp.1-11.
[6] Etemad, K. and R. Chellappa, "Discriminant analysis for recognition of human face images," Journal of the Optical Society of America A, vol.14, no.8, pp.1724-1733, 1997.
[7] Friedman, J., T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," The Annals of Statistics, vol.28, no.2, pp.337-407, 2000.
[8] Gunasekar, S., J. Ghosh, and A. C. Bovik, "Face detection on distorted images augmented by perceptual quality-aware features," IEEE Trans. on Information Forensics and Security, vol.9, no.12, pp.2119-2131, 2014.
[9] Hjelmås, E. and B. K. Low, "Face detection: A survey," Computer Vision and Image Understanding, vol.83, no.3, pp.236-274, 2001.
[10] Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," in Proc. of the 22nd ACM Int. Conf. on Multimedia, Orlando, Florida, 2014, pp.675-678.
[11] Kelly, M. D., eds., Visual Identification of People by Computer, Technique Report AI-130, Stanford AI Project, Stanford, CA, 1971.
[12] Kirby, M. and L. Sirovich, "Application of the karhunen-loeve procedure for the characterization of human faces," IEEE Trans. on Pattern Analysis Machine Intelligence, vol.12, no.1, pp.103-108, 1990.
[13] Krizhevsky, A., I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks, " in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds., Curran Associates, Inc., 2013, pp.1097-1105.
[14] Lawrence, S., C. L. Giles, A. C. Tsoi, and A. D. Back, "Face recognition: a convolutional neural-network approach," IEEE Trans. on Neural Networks, vol.8, no.1, pp.98-113, 1997.
[15] LeCun, Y., Y. Bengio, and G. Hinton, "Deep learning," Nature, vol.521, no.7553, pp.436-444, 2015.
[16] Li, S. Z. and A. K. Jain, eds., Handbook of Face Recognition, 2nd Edition, Springer-Verlag, London, UK, 2011.
[17] Liao, S., X. Zhu, Z. Lei, L. Zhang, and S. Z. Li, "Learning multi-scale block local binary patterns for face recognition," in Proc. Int. Conf. on Advances in Biometrics, Seoul, Korea, Aug.27-29, 2007, pp.828-837.
[18] Lienhart, R. and J. Maydt, "An extended set of Haar-like features for rapid object detection," in Proc. IEEE Int. Conf. on Image Processing, Rochester, New York, Sep.22-25, 2002, vol.1, pp.900-903.
[19] Meynet, J., V. Popovici, and J.-P. Thiran, "Face detection with boosted Gaussian features," Pattern Recognition, vol.40, no.8, pp.2283-2291, 2007.
[20] Nefian, A. V. and M. H. Hayes, III, "Hidden Markov models for face recognition," in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Seattle, Washington, May 12-15, 1998, pp.2721-2724.
[21] Ojala, T., M. Pietikäinen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognition, vol.29, no.1, pp.51-59, 1996.
[22] Ojala, T. and M. Pietikäinen, "Unsupervised texture segmentation using feature distributions," Pattern Recognition, vol.32, no.3, pp.477-486, 1999.
[23] Ojala, T. and M. Pietikäinen, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.24, no.7, pp.971-987, 2002.
[24] Okada, K., J. Steffens, T. Maurer, H. Hong, E. Elagin, H. Neven, and C. v. d. Malsburg, "The Bochum/USC face recognition system and how it fared in the FERET phase III test," in Face Recognition: From Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. Fogeman Saulie, and T. S. Huang, eds., Springer-Verlag, 1998, pp.186-205.
[25] Shan, C., S. Gong, and P. W. McOwan, "Facial expression recognition based on local binary patterns: A comprehensive study," Image and Vision Computing, vol.27, no.6, pp.803-816, 2009.
[26] Shaoqing, R., C. Xudong, W. Yichen, and S. Jian, "Face alignment at 3000 FPS via regressing local binary features," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, Jun.23-28, 2014, pp.1685-1692.
[27] Shermina, J., "Illumination invariant face recognition using discrete cosine transform and principal component analysis," in Proc. of Int. Conf. on Emerging Trends in Electrical and Computer Technology (ICETECT), Tamil Nadu, India, Mar.23-24, 2011, pp.826-830.
[28] Tan, X., S. Chen, Z.-H. Zhou, and F. Zhang, "Face recognition from a single image per person: A survey," Pattern Recognition, vol.39, no.9, pp.1725-1745, 2006.
[29] Turk, M. and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, vol.3, no.1, pp.71-86, 1991.
[30] Viola, P. and M. J. Jones, "Rapid object detection using a boosted cascade of simple features," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Cambridge, Massachusetts, Dec.8-14, 2001, vol.1, pp.I-511-I-518.
[31] Viola, P. and M. J. Jones, "Robust real-time face detection," Int. Journal of Computer Vision, vol.57, no.2, pp.137-154, 2004.
[32] Wiskott, L., J.-M. Fellous, N. Krüger, and C. v. d. Malsburg, "Face recognition by elastic bunch graph matching," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.19, no.7, pp.775-779, 1997.
[33] Wright, J., A. Y. Yang, A. Ganesh, S. S. Sastry, and M. Yi, "Robust face recognition via sparse representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.31, no.2, pp.210-227, 2009.
[34] Yang, J., D. Zhang, A. F. Frangi, and J.-y. Yang, "Two-dimensional PCA: A new approach to appearance-based face representation and recognition," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.1, pp.131-137, 2004.
[35] Yang, M.-H., D. J. Kriegman, and N. Ahuja, "Detecting faces in images: A survey," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.24, no.1, pp.34-58, 2002.
[36] Zhang, L., R. Chu, S. Xiang, S. Liao, and S. Z. Li, "Face detection based on multi-block LBP representation," in Proc. Int. Conf. on Advances in Biometrics, Seoul, Korea, Aug.27-29, 2007, pp.11-18.
[37] Zhao, W., R. Chellappa, P. J. Phillips, and A. Rosenfeld, "Face recognition: A literature survey," ACM Computing Surveys, vol.35, no.4, pp.399-458, 2003.
指導教授 曾定章 審核日期 2016-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明