博碩士論文 103581010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:52.15.158.238
姓名 林信潔(Hsin-Chieh Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於第五代行動通訊 FR1 頻段小型基地站之連續模式與多悌氮化鎵單晶與準單晶微波積體電路功率放大器之研製
(Implementations on Continuous Mode and Doherty GaN MMIC and Quasi-MMIC Power Amplifier Designs for 5G NR FR1 Microcell Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文之主旨係針對「應用於第五代行動通訊 FR1 頻段小型基地站之連續模式與多悌氮化鎵單晶與準單晶微波積體電路功率放大器」之設計與討論,論文利用穩懋半導體公司 (WINTM) 所提供之0.45-µm 、0.25-µm 碳化矽氮化鎵製程與砷化鎵整合式被動元件製程分別設計應用於5G NR FR1 n77、n78、n79頻段之小型基地台功率放大器。考慮到成本與未來進行更複雜電路設計的可能,除了單晶以外也採用了準單晶的組合式結構。為了能讓運作時產生的熱量充分散逸,採用了板上晶片黏著與磅線組裝,並且依據電磁模擬結果決定其組裝的磅線數量與長度。電路結構以多悌和連續模式兩種操作模式分別設計。其中一組多悌準單晶兩級功率放大器達到操作頻寬3.35 - 4.2 GHz,在連續波模式輸出飽和功率41.08 dBm,最高增益 20.3 dB,最高功率附加效率 28.2%。其中兩組J 類連續模式準單晶兩級功率放大器分別達到操作頻寬2.85 - 4.48 GHz 與2.84 - 4.47 GHz,在脈衝波模式輸出飽和功率40.3 dBm與40.0 dBm,增益 21.7 dB 與 21.6 dB,最高功率附加效率 39.3% 與 36.5%。其中一組F 類連續模式單晶兩級功率放大器達到輸出功率頻寬為3.6 - 5.4 GHz,在連續波模式輸出飽和功率41.08 dBm,最高增益 20.4 dB,最高功率附加效率 50.9%。並且對本論文所設計組裝之四組功率放大器進行實際操作下的溫度量測,經由量測得到功率放大器於連續波或脈衝波操作模式下之晶片溫度推算其故障前之平均時間,確認其在實際安裝操作下的可行性。
摘要(英) The main purpose of this dissertation is to develop the "Implementations on Continuous Mode and Doherty GaN MMIC and Quasi-MMIC Power Amplifier Designs for 5G NR FR1 Microcell Applications". This dissertation adopted the 0.45-µm and 0.25-µm gallium nitride on silicon carbide processes and gallium arsenide integrated passive device process provided by WINTM Semiconductors to design power amplifiers for microcell base stations in the 5G NR FR1 n77, n78, and n79 bands. Considering cost and the possibility of more complex circuit designs in the future, Quasi-MMIC structures were used. To ensure effective heat dissipation during operation, chip-on-board and wire bonding assembly techniques were employed. The selection of the number and length of bonding wires was confirmed by electromagnetic simulation results. The circuit structures were designed for both Doherty and continuous modes. The Doherty Quasi-MMIC two-stage power amplifier achieved an operational bandwidth of 3.35 - 4.2 GHz, a continuous-wave output saturation power of 41.08 dBm, a maximum gain of 20.3 dB, and a maximum power-added efficiency of 28.2%. The two continuous Class J mode Quasi-MMIC two-stage power amplifiers achieved operational bandwidths of 2.85 - 4.48 GHz and 2.84 - 4.47 GHz, pulse-mode output saturation powers of 40.3 dBm and 40.0 dBm, gains of 21.7 dB and 21.6 dB, and maximum power-added efficiencies of 39.3% and 36.5%, respectively. The continuous Class F mode MMIC two-stage power amplifier achieved an output power bandwidth of 3.6 - 5.4 GHz, a continuous-wave output saturation power of 41.08 dBm, a maximum gain of 20.4 dB, and a maximum power-added efficiency of 50.9%. The dissertation also incorporates temperature measurements for the four power amplifiers that were designed and assembled. These measurements confirm the applicability of the amplifiers in both continuous-wave and pulse-mode operations, as well as the robustness of their chip temperatures and mean time to failure.
關鍵字(中) ★ 第五代行動通訊
★ 小型基地站
★ 單晶微波積體電路
★ 連續模式
★ 多悌
★ 功率放大器
關鍵字(英) ★ 5G NR
★ Microcell
★ MMIC
★ Continuous Mode
★ Doherty
★ Power Amplifier
論文目次 中文摘要 i
Abstract ii
致謝 iv
Contents vii
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1-1 Background and Motivation 1
1-2 Literature Review 6
1-3 Contributions 7
1-4 Dissertation Organization 8
Chapter 2 Introduction of Technologies and Assembly Design 9
2-1 Introduction of Technologies 9
2-1-1 GaN45 (NP45-11) 11
2-1-2 GaN25 (NP25-00) 11
2-1-3 GaAs IPD (IP3M-00/01) 12
2-2 Design of Assemblies and Interconnects 13
2-3 Summary 19
Chapter 3 Design of a 12.8 W Doherty Quasi-MMIC Power Amplifier 20
3-1 Introduction 20
3-2 Circuit Design 20
3-2-1 Assembly Design 20
3-2-2 Block Diagram 21
3-2-3 Coupler Circuit Design 23
3-2-4 Output Circuit Design 24
3-3 Experiment Results 30
3-3-1 Measurements 30
3-3-2 Thermal 33
3-3-3 Modulation Signal 35
3-3-4 Performance Comparison 36
3-4 Summary 37
Chapter 4 Design of 10 W 36.5 % Efficient Broadband Continuous Class-B/J Mode Quasi-MMIC Power Amplifiers 38
4-1 Introduction 38
4-2 Circuit Design 38
4-2-1 Assembly and Interconnect Design 38
4-2-2 Transistor and Bias Selection 39
4-2-3 Bias and Stability Network Design 42
4-2-4 Class-B/J output matching network 43
4-2-5 Schematics, Assemblies and 3D views 47
4-3 Experimental Results and Discussions 49
4-3-1 Chip Photographs and Assemblies 49
4-3-2 Small-Signal and Large-Signal Characterizations 50
4-3-3 Thermal 53
4-3-4 Modulation-Signal Characterizations 54
4-3-5 Discussions 57
4-4 Summary 58
Chapter 5 Design of an 8.1W 50.9% Efficient Broadband Continuous Class-F Mode MMIC Power Amplifier 60
5-1 Introduction 60
5-2 Circuit Design 60
5-2-1 Assembly Design 60
5-2-2 Transistor Selection 61
5-2-3 Bias Voltage Selection 63
5-2-4 Bias Circuit Selection 63
5-2-5 Implementation of Continuous Class-F Mode Matching Network 66
5-3 Experiment Results and Discussions 70
5-3-1 Measurements 70
5-3-2 Thermal 74
5-3-3 Modulation Signal 75
5-3-4 Performance Comparison 78
5-4 Summary 78
Chapter 6 Conclusion and Future Works 80
6-1 Conclusion 80
6-2 Future Works 82
References 83
Publication List 91
參考文獻 [1] 5G; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS 38.101-1 version 16.8.0 Release 16), ETSI TS 138 101-1 V16.8.0, September 2021.
[2] 5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 standalone (3GPP TS 38.521-2 version 16.7.0 Release 16), ETSI TS 138 521-2 V16.7.0, June 2021.
[3] F. Balteanu, H. Modi, Y. Choi, J. Lee, S. Drogi and S. Khesbak, "5G RF Front End Module Architectures for Mobile Applications," in 2019 49th European Microwave Conference (EuMC), Paris, France, 2019, pp. 252-255, doi: 10.23919/EuMC.2019.8910723.
[4] J. C. Mayeda, D. Y. C. Lie and J. Lopez, "A high efficiency fully-monolithic 2-stage C-band GaN power amplifier for 5G microcell applications," in 2018 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 2018, pp. 1-4, doi: 10.1109/WMCaS.2018.8400623.
[5] T. Qi and S. He, "Power Up Potential Power Amplifier Technologies for 5G Applications," IEEE Microwave Magazine, vol. 20, no. 6, pp. 89-101, June 2019, doi: 10.1109/MMM.2019.2904409.
[6] D. Y. C. Lie, J. C. Mayeda and J. Lopez, "Highly efficient 5G linear power amplifiers (PA) design challenges," in 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2017, pp. 1-3, doi: 10.1109/VLSI-DAT.2017.7939653.
[7] Aymen Ghorbel, Ezgi Dogmus and Poshun Chiu, "RF GaN Market Broadens Its Appeal with an Appetite for GaN-on-Silicon," Yole Intelligence, Lyon, France, August 14, 2023.
[8] Gary Lerude, "Survey of RF GaN Fabs: Successful Commercialization and Global Supply," Microwave Journal, June 14, 2021.
[9] H. Qian, Q. Liu, J. Silva-Martinez and S. Hoyos, "A 35 dBm Output Power and 38 dB Linear Gain PA With 44.9% Peak PAE at 1.9 GHz in 40 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 51, no. 3, pp. 587-597, March 2016, doi: 10.1109/JSSC.2015.2510026.
[10] H. Ahn et al., "A Fully Integrated −32-dB EVM Broadband 802.11abgn/ac PA With an External PA Driver in WLP 40-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 5, pp. 1870-1882, May 2019, doi: 10.1109/TMTT.2019.2899332.
[11] R. S. Nitesh, J. Rajendran, H. Ramiah and B. S. Yarman, "A 0.8 mm2 Sub-GHz GaAs HBT Power Amplifier for 5G Application Achieving 57.5% PAE and 28.5 dBm Maximum Linear Output Power," IEEE Access, vol. 7, pp. 158808-158819, 2019, doi: 10.1109/ACCESS.2019.2949369.
[12] Z. Ma, Z. Ma and K. Ma, "A 35 dBm PSAT and 41% PAE GaAs Power Amplifier With Series Distributed-Balun," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 2, pp. 461-465, Feb. 2023, doi: 10.1109/TCSII.2022.3180072.
[13] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard and W. L. Pribble, "A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1764-1783, June 2012, doi: 10.1109/TMTT.2012.2187535.
[14] R. Ma, K. H. Teo, S. Shinjo, K. Yamanaka and P. M. Asbeck, "A GaN PA for 4G LTE-Advanced and 5G: Meeting the Telecommunication Needs of Various Vertical Sectors Including Automobiles, Robotics, Health Care, Factory Automation, Agriculture, Education, and More," IEEE Microwave Magazine, vol. 18, no. 7, pp. 77-85, Nov.-Dec. 2017, doi: 10.1109/MMM.2017.2738498.
[15] Y. -S. Lee, M. -W. Lee, S. -H. Kam and Y. -H. Jeong, "A High-Efficiency GaN-Based Power Amplifier Employing Inverse Class-E Topology," IEEE Microwave and Wireless Components Letters, vol. 19, no. 9, pp. 593-595, Sept. 2009, doi: 10.1109/LMWC.2009.2027095.
[16] H. Taleb-Alhagh Nia and V. Nayyeri, "A 0.85–5.4 GHz 25-W GaN Power Amplifier," IEEE Microwave and Wireless Components Letters, vol. 28, no. 3, pp. 251-253, March 2018, doi: 10.1109/LMWC.2018.2794818.
[17] L. -H. Huang and H. -K. Chiou, "An Ultra-compact 14.9-W X-Band GaN MMIC Power Amplifier," in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong, 2020, pp. 257-259, doi: 10.1109/APMC47863.2020.9331325.
[18] D. Gustafsson, K. Andersson, A. Leidenhed, M. Malmstrom, A. Rhodin and T. Wegeland, "A packaged hybrid doherty PA for microwave links," in 2016 46th European Microwave Conference (EuMC), London, UK, 2016, pp. 1437-1440, doi: 10.1109/EuMC.2016.7824624.
[19] M. Ayad, E. Byk, G. Neveux, M. Camiade and D. Barataud, "Single and dual input packaged 5.5–6.5GHz, 20W, Quasi-MMIC GaN-HEMT Doherty Power Amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 114-117, doi: 10.1109/MWSYM.2017.8058804.
[20] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "Design and characterization of a 1.7–2.7 GHz quasi-MMIC Doherty power amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 771-773, doi: 10.1109/MWSYM.2017.8058689.
[21] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "A 1.8–3.2-GHz Doherty Power Amplifier in Quasi-MMIC Technology," IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 345-347, May 2019, doi: 10.1109/LMWC.2019.2904883.
[22] R. -J. Liu et al., "A 30-W GaN Quasi-MMIC Doherty Power Amplifier Based on All-Distributed Inductors Load Network," in 2021 51st European Microwave Conference (EuMC), London, United Kingdom, 2022, pp. 946-949, doi: 10.23919/EuMC50147.2022.9784325.
[23] Y. Cao, X. -W. Zhu, R. -J. Liu and Q. Dong, "Design of an S-band quasi-MMIC Power Amplifier," in 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 2021, pp. 1-3, doi: 10.1109/ICMMT52847.2021.9618627.
[24] W. H. Doherty, "A New High Efficiency Power Amplifier for Modulated Waves," Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, Sept. 1936, doi: 10.1109/JRPROC.1936.228468.
[25] F. H. Raab, "Class-F power amplifiers with maximally flat waveforms," IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 11, pp. 2007-2012, Nov. 1997, doi: 10.1109/22.644215.
[26] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the Continuity of High Efficiency Modes in Linear RF Power Amplifiers," IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009, doi: 10.1109/LMWC.2009.2029754.
[27] V. Carrubba et al., "The Continuous Class-F Mode Power Amplifier," in 40th European Microwave Conference, Paris, France, 2010, pp. 1674-1677, doi: 10.23919/EUMC.2010.5616309.
[28] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA Design: The "Continuous" Mode of Operation," in 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 2012, pp. 1-4, doi: 10.1109/CSICS.2012.6340118.
[29] Ralf Ohmberger, "Understanding Datasheet Thermal Parameters and IC Junction Temperatures," Monolithic Power Systems (MPS), Kirkland, Washington, USA, Rep. Article #0057, May 2023.
[30] C. -H. Li, C. -L. Ko, C. -N. Kuo, M. -C. Kuo and D. -C. Chang, "A Low-Cost DC-to-84-GHz Broadband Bondwire Interconnect for SoP Heterogeneous System Integration," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4345-4352, Dec. 2013, doi: 10.1109/TMTT.2013.2281966.
[31] C. -H. Chan, C. -C. Chou and H. -R. Chuang, "Integrated Packaging Design of Low-Cost Bondwire Interconnection for 60-GHz CMOS Vital-Signs Radar Sensor Chip With Millimeter-Wave Planar Antenna," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 2, pp. 177-185, Feb. 2018, doi: 10.1109/TCPMT.2017.2782342.
[32] M. Umar, M. Laabs, N. Neumann and D. Plettemeier, "Bondwire Model and Compensation Network for 60 GHz Chip-to-PCB Interconnects," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 11, pp. 2196-2200, Nov. 2021, doi: 10.1109/LAWP.2021.3108499.
[33] Sivabalan Mohan, "Thermal Comparison of FR-4 and Insulated Metal Substrate PCB for GaN Inverter," Texas Instruments (TI), Dallas, Texas, USA, Rep. TIDA030, June 2019.
[34] D. Kang, D. Kim, Y. Cho, B. Park, J. Kim and B. Kim, "Design of Bandwidth-Enhanced Doherty Power Amplifiers for Handset Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3474-3483, Dec. 2011, doi: 10.1109/TMTT.2011.2171042.
[35] S. Jee et al., "Asymmetric Broadband Doherty Power Amplifier Using GaN MMIC for Femto-Cell Base-Station," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 9, pp. 2802-2810, Sept. 2015, doi: 10.1109/TMTT.2015.2442973.
[36] G. Lv, W. Chen, L. Chen and Z. Feng, "A Fully Integrated C-band GaN MMIC Doherty Power Amplifier with High Gain and High Efficiency for 5G Application," in 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019, pp. 560-563, doi: 10.1109/MWSYM.2019.8701103.
[37] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "Design and characterization of a 1.7–2.7 GHz quasi-MMIC Doherty power amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 771-773, doi: 10.1109/MWSYM.2017.8058689.
[38] M. Ayad, E. Byk, G. Neveux, M. Camiade and D. Barataud, "Single and dual input packaged 5.5–6.5GHz, 20W, Quasi-MMIC GaN-HEMT Doherty Power Amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017, pp. 114-117, doi: 10.1109/MWSYM.2017.8058804.
[39] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "A 1.8–3.2-GHz Doherty Power Amplifier in Quasi-MMIC Technology," IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 345-347, May 2019, doi: 10.1109/LMWC.2019.2904883.
[40] Chiou, Hwann-Kaeo, Hsin-Chieh Lin, and Da-Chiang Chang, "High-Efficiency and Cost-Effective 10 W Broadband Continuous Class-J Mode Quasi-MMIC Power Amplifier Design Utilizing 0.25 μm GaN/SiC and GaAs IPD Technology for 5G NR n77 and n78 Bands," Electronics, vol. 12, no. 16, pp. 3494, Aug. 2023.
[41] L. C. Nunes, P. M. Cabral and J. C. Pedro, "AM/AM and AM/PM Distortion Generation Mechanisms in Si LDMOS and GaN HEMT Based RF Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 799-809, April 2014, doi: 10.1109/TMTT.2014.2305806.
[42] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Pearson, London, 1996, pp.240-243.
[43] S. Saxena, K. Rawat and P. Roblin, "Continuous Class-B/J Power Amplifier Using a Nonlinear Embedding Technique," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 7, pp. 837-841, July 2017, doi: 10.1109/TCSII.2016.2633300.
[44] A. Alizadeh, S. Hassanzadehyamchi and A. Medi, "Integrated Output Matching Networks for Class–J/J−1 Power Amplifiers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 2921-2934, Aug. 2019, doi: 10.1109/TCSI.2019.2912007.
[45] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of Highly Linear Broadband Continuous Mode GaN MMIC Power Amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019, doi: 10.1109/ACCESS.2019.2914563.
[46] C. Florian, R. Cignani, D. Niessen and A. Santarelli, "A C-Band AlGaN-GaN MMIC HPA for SAR," IEEE Microwave and Wireless Components Letters, vol. 22, no. 9, pp. 471-473, Sept. 2012, doi: 10.1109/LMWC.2012.2212238.
[47] S. May, D. Maassen, F. Rautschke and G. Boeck, "Two stage 4–8 GHz, 5 W GaN-HEMT amplifier," in 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 2017, pp. 136-139, doi: 10.23919/EuMC.2017.8230818.
[48] B. Zhao, C. Sanabria and T. Hon, "A 2-Stage S-Band 2W CW GaN MMIC Power Amplifier in an Overmold QFN Package," in 2022 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 2022, pp. 1-5, doi: 10.1109/WMCS55582.2022.9866273.
[49] Hsin-Chieh Lin, Kuan-Chou Chen, and Hwann-Kaeo Chiou, "An 8.1-W, 50.9% efficient continuous Class-F mode power amplifier developed using 0.25-μm GaN/SiC technology for 5G NR n79 band," IEICE Electronics Express, vol. 20, no. 8, pp. 1-6, Apr. 2023.
[50] N. -C. Kuo et al., "DC/RF Hysteresis in Microwave pHEMT Amplifier Induced by Gate Current—Diagnosis and Elimination," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 11, pp. 2919-2930, Nov. 2011, doi: 10.1109/TMTT.2011.2160966.
[51] T. A. Winslow, "A Novel CAD Probe for Bidirectional Impedance and Stability Analysis," in 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018, pp. 1032-1035, doi: 10.1109/MWSYM.2018.8439210.
[52] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, "A Simplified Broadband Design Methodology for Linearized High-Efficiency Continuous Class-F Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1952-1963, June 2012, doi: 10.1109/TMTT.2012.2187534.
[53] C. -H. Lin and H. -Y. Chang, "A High Efficiency Broadband Class-E Power Amplifier Using a Reactance Compensation Technique," IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 507-509, Sept. 2010, doi: 10.1109/LMWC.2010.2056675.
[54] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A Fully Integrated Class-J GaN MMIC Power Amplifier for 5-GHz WLAN 802.11ax Application," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018, doi: 10.1109/LMWC.2018.2811338.
[55] G. Nikandish, R. B. Staszewski and A. Zhu, "Broadband Fully Integrated GaN Power Amplifier With Embedded Minimum Inductor Bandpass Filter and AM–PM Compensation," IEEE Solid-State Circuits Letters, vol. 2, no. 9, pp. 159-162, Sept. 2019, doi: 10.1109/LSSC.2019.2927855.
[56] G. R. Nikandish, A. Nasri, A. Yousefi, A. Zhu and R. B. Staszewski, "A Broadband Fully Integrated Power Amplifier Using Waveform Shaping Multi-Resonance Harmonic Matching Network," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 2-15, Jan. 2022, doi: 10.1109/TCSI.2021.3095708.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2024-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明