參考文獻 |
[1] M.Y. Chen, G. Alregib, B.-H. Juang, Air-writing recognition—Part I: modeling and recognition of characters, words, and connecting motions, IEEE Trans. Hum.-Mach. Syst. 46 (3) (2016) 403–413.
[2] S. Mitra, T. Acharya, Gesture recognition: a survey, IEEE Trans. Syst., Man, Cybern. C Appl. Rev. 37 (3) (2007).
[3] L. Gupta, S. Ma, Gesture-based interaction and communication: automated classification of hand gesture contours, IEEE Trans. Syst. Man Cybern. C Appl. Rev. 31 (1) (2001) 114–120.
[4] I. Infantino, R. Rizzo, S. Gaglio, A framework for sign language sentence recognition by commonsense context, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., 37(5) (Sep. 2007) 1034–1039.
[5] X. Zhang, et al., A framework for hand gesture recognition based on accelerometer and EMG sensors, IEEE Trans. Syst., Man, Cybern., A, Syst., Humans, 41(6) (Nov. 2011) 1064-1076.
[6] K.M. Lim, A.W.C. Tan, S.C. Tan, Block-based histogram of optical flow for isolated sign language recognition, J. Vis. Commun. Image R. 40 (2016) 538–545.
[7] T.-H. S. Li, M.-C. Kao, P.-H. Kuo, Recognition System for Home-Service-Related Sign Language Using Entropy-Based K -Means Algorithm and ABC-Based HMM, IEEE Trans. Systems, Man, and Cybernetics, 46(1) (Jan. 2016).
[8] N.C. Kiliboz, U. Gudukay, A hand gesture recognition technique for human–computer interaction, J. Vis. Commun. Image R. 28 (2015) 97–104.
[9] J. Yang, J. Yuan, Y. Li, Parsing 3D motion trajectory for gesture recognition, J. Vis. Commun. Image R. 38 (2016) 627–640.
[10] X. Zhang, et al., A new writing experience: finger writing in the air using a kinect sensor, IEEE Multimedia 20 (4) (2013) 85–93.
[11] K. Tsuchida, H. Miyao, M. Maruyama, Handwritten Character Recognition in the Air by Using Leap Motion Controller, International Conference on Human Computer Interaction, vol. 52, Springer, pp. 534-538, 2015, https://doi.org /10.1007/978-3-319-21380-4_91.
[12] C.-C. Chiang, R.-H. Wang, B.-R. Chen, ‘Recognizing arbitrarily connected and superimposed handwritten numerals in intangible writing interfaces’, Pattern Recogn. 61 (2017) 15–28.
[13] J. Tian, C. Qu, W. Xu, S. Wang, KinWrite: Handwriting-Based Authentication Using Kinect, in: Proceedings of the 20th Annual Network & Distributed System Security Symposium, 2013.
[14] Romain Tavenard, An introduction to Dynamic Time Warping, https://rtavenar.github.io/blog/dtw.html#dynamic-time-warping
[15] C.Z. Qu, D.Y. Zhang, J. Tian, Online kinect handwritten digit recognition based on dynamic time warping and support vector machine, J. Inform. Computational Sci. 12 (1) (2015) 413–422.
[16] -T. Chu, C.-Y. Su, A Kinect-Based Handwritten Digit Recognition for TV Remote Controller, IEEE International Symposium on Intelligent Signal Processing and Communications Systems, 2012, pp.414-419.
[17] F.-A. Huang, C.-Y. Su, T.-Te Chu, Kinect-Based Bid-Air Handwritten Digit Recognition using Multiple Segments and Scaled Coding, IEEE International Symposium on Intelligent Signal Processing and Communications Systems, Nov. 2013, pp. 694-697.
[18] C.-Y. Su, et al., Kinect-Based Midair Handwritten Number Recognition System for Dialing Numbers and Setting a Timer, IEEE International Conference on Systems, Man and Cybernetics, Oct. 2014, pp. 2127-2130.
[19] T. Murata, J. Shin, Hand Gesture and Character Recognition Based on Kinect Sensor, International Journal of Distributed Sensor Networks, vol. 10, Jul. 2014, [online] Available: https://doi.org/10.1155/2014/543278460.
[20] A. Schick, D. Morlock, C. Amma, Vision-Based Handwriting Recognition for Unrestricted Text Input in Mid-Air, in: Proceedings of the 14th ACM international conference on Multimodal Interaction, Oct. 2012, pp. 217-220.
[21] S. Beg, M. F. Khan, and F. Baig, “Text writing in Air,” Journal of Information Display, vol. 14, no. 4, 2013, https://doi.org/10.1080/15980316.2013.860928.
[22] A. Takeuchi, Y. Manabe, K. Sugawara, Multimodal Soft Biometrie Verification by Hand Shape and Handwriting Motion in the Air, IEEE International Joint Conference on Awareness Science and Technology and Ubi-Media Computing, Nov. 2013, pp. 103-109.
[23] Z.-Wen Sun et al., A 3-D hand gesture signature based biometric authentication system for smartphones, Security Communication Networks, vol. 9, Feb. 2016, pp.1359-1373.
[24] G. Xiao, M. Milanova, M. Xie, Secure behavioral biometric authentication with leap motion, 2016 4th International Symposium on Digital Forensic and Security (ISDFS), Little Rock, AR, 2016, pp. 112-118, doi: 10.1109/ISDFS.2016.7473528.
[25] N. Akazawa, Y. Takei, Y. Nakayama, H. Kakuda, M. Suzuki, A Learning Support System for 9x9 multiplication table with Kinect, in: IEEE 2nd Global Conference on Consumer Electronics (GCCE), Oct. 2013, pp. 253-257.
[26] P. Suryanarayan, A. Subramanian, D. Mandalapu, Dynamic Hand Pose Recognition Using Depth Data, IEEE International Conference on Pattern Recognition, Aug. 2010, pp. 3105-3108.
[27] L.W. Chiu, et al., Person authentication by air-writing using 3D sensor and time order stroke context, International Conference on Smart Multimedia ICSM (2018) 260–273.
[28] T.-H. Tsai, J.-W. Hsieh, H.C. Chen, Shih-Chin Huang. Reverse time ordered stroke context for air-writing recognition, in: 2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media).
[29] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Trans. Pattern Recognition Mach. Intell. 24 (4) (2002) 509–522.
[30] Hofmann, M.; Geiger, J.; Bachmann, S.; Schuller, B.; Rigoll, G. The TUM Gait from Audio, Image and Depth (GAID) Database:Multimodal Recognition of Subjects and Traits. J. Vis. Commun. Image Represent. 2014, 25, 195–206. [CrossRef]
[31] Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 8 December 2014.
[32] Donahue, J.; Hendricks, L.A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015.
[33] Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.
[34] Feng, Y.; Li, Y.; Luo, J. Learning Effective Gait Features Using LSTM. In Proceedings of the International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016.
[35] Giacomo, G.; Martinelli, F.; Saracino, A.; Alishahi, M.S. Try Walking in My Shoes, if You Can: Accurate Gait Recognition Through Deep Learning. In Proceedings of the International Conference on Computer Safety, Reliability, and Security, Trento, Italy, 12–15 September 2017.
[36] Das, D.; Chakrabarty, A. Human Gait Recognition using Deep Neural Networks. In Proceedings of the International Conference on Information and Communication Technology for Competitive Strategies, Udaipur, India, 4–5 March 2016.
[37] Sokolova, A.; Konushin, A. Pose-based Deep Gait Recognition. IET Biom. 2019, 8, 134–143. [CrossRef]
[38] Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; Pérez de la Blanca, N. Automatic learning of gait signatures for people identification. In Proceedings of the International Work-Conference on Artificial Neural Networks, Cádiz, Spain, 18 May 2017.
[39] Redmon, J.; Farhadi, A. Yolo9000: Better, faster, stronger. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
[40] Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
[41] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016.
[42] Girshick, R. Fast R-CNN. In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.
[43] Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 7–12 December 2015.
[44] Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015.
[45] Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. Flownet: Learning optical flow with convolutional networks. In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.
[46] He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016.
[47] Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In Proceedings of the British Machine Vision Conference, York, UK,19–22 September 2016. |