博碩士論文 103582009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.15.1.23
姓名 郭言輝(Yen Hui Kuo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 進階人工智慧聯網與邊緣架構的工廠用無人駕駛車輛系統
(Advanced AIoT and Edge Architecture Innovative Unmanned Vehicle Systems for Factories)
相關論文
★ 具多重樹狀結構之可靠性群播傳輸★ 在嵌入式行動裝置上設計與開發跨平台Widget
★ 在 ARM 架構之嵌入式系統上實作輕量化的手持多媒體播放裝置圖形使用者介面函式庫★ 基於網路行動裝置所設計可擴展的服務品質感知GStreamer模組
★ 針對行動網路裝置開發可擴展且跨平台之GSM/HSDPA引擎★ 於單晶片多媒體裝置進行有效率之多格式解碼管理
★ IMS客戶端設計與即時通訊模組研發:個人資訊交換模組與即時訊息模組實作★ 在可攜式多媒體裝置上實作人性化的嵌入式小螢幕網頁瀏覽器
★ 以IMS為基礎之及時語音影像通話引擎的實作:使用開放原始碼程式庫★ 電子書嵌入式開發: 客制化下載服務實作, 資料儲存管理設計
★ 於數位機上盒實現有效率訊框參照處理與多媒體詮釋資料感知的播放器設計★ 具數位安全性的電子書開發:有效率的更新模組與資料庫實作
★ 適用於異質無線寬頻系統的新世代IMS客戶端軟體研發★ 在可攜式數位機上盒上設計並實作重配置的圖形使用者介面
★ Friendly GUI design and possibility support for E-book Reader based Android client★ Effective GUI Design and Memory Usage Management for Android-based Services
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 新冠肺炎 (COVID-19) 疫情之後,各行業頻繁出現人力短缺問題。許多追求未來技術的工廠正在積極發展智慧工廠,引進自動化設備,以提高工廠製造效率。然而,現有無線通信的延遲和不可靠性使其難以滿足AGV導航的需求。選擇正確的傳感器、可靠的通信和導航控制技術對於系統整合商來說仍然是一個具有挑戰性的問題。當今大多數無人駕駛車輛都使用昂貴的感測器或需要布建新的基礎設施或預先構建工廠電子地圖,這阻礙了其廣泛採用度。在本文中,我們介紹了一種用於無人駕駛車輛系統的自學習路徑規劃和高效率圖像識別演算法。我們開發了一種無需添加任何專門基礎設施即可進行導航的無人駕駛車輛系統,並在工廠進行了測試以驗證其可用性。該系統的創新之處在於,我們開發了一種無需任何額外基礎設施或預建工廠電子地圖的無人駕駛車輛系統,並且我們開發了基於邊緣計算和物聯網技術的混合車隊管理系統,以提高駕駛安全性。該系統的核心貢獻在於,我們為無人駕駛車系統開發了快速圖像識別演算法、自學習路徑規劃演算法和混合車隊管理方法,以提高導航安全性。
摘要(英) Post-COVID-19, there are frequent manpower shortages across industries. Many factories pursuing future technologies are actively developing smart factories and introducing automation equipment to improve factory manufacturing efficiency. However, the delay and unreliability of existing wireless communication make it difficult to meet the needs of AGV navigation. Selecting the right sensor, reliable communication, and navigation control technology remains a challenging issue for system integrators. Most of today’s unmanned vehicles use expensive sensors or require new in-frastructure to be deployed, impeding their widespread adoption. In this paper, we have devel-oped a self-learning and efficient image recognition algorithm. We developed an unmanned vehicle system that can navigate without adding any specialized infrastructure, and tested it in the factory to verify its usability. The novelties of this system are that we have developed an unmanned vehicle system without any additional infrastructure, and we developed a rapid image recognition algo-rithm for unmanned vehicle systems to improve navigation safety. The core contribution of this system is that the system can navigate smoothly without expensive sensors and without any ad-ditional infrastructure. It can simultaneously support a large number of unmanned vehicle systems in a factory.
關鍵字(中) ★ 人工智慧
★ 物聯網
★ 邊緣計算
★ 影像辨識
關鍵字(英) ★ artificial intelligence
★ Internet of Things
★ edge computing
★ image recognition
★ unmanned vehicle
論文目次 Chapter 1. Introduction 3
1.1 Purpose 4
1.2 Motivation 7
Chapter 2. Related Work and Background Knowledge 10
Chapter 3. Technology 17
3.1 System Architecture 18
3.2 AIoT and Edge-Cloud technology 19
3.3 Virtual route path planning 22
3.4 Image Recognition Technology 28
3.5 Image recognition Algorithm 31
3.6 Motor control scheme 34
3.7 Navigation scheme 36
3.8 Anti-collision mechanism 39
Chapter 4. Advanced Unmanned Vehicle System 42
4.1 System Architecture 43
4.2 Unmanned vehicle booking and Routing path planning 44
4.3 Sensing and Analysis 46
4.4 Electrical motor control 48
4.5 Navigation Control 49
4.6 Test Results 54
4.7 Discussion 57
Chapter 5. Conclusion 63
References 66
參考文獻 1. Guo, D.; Li, M.; Lyu, Z.; Kang, K.; Wu, W.; Zhong, R.Y.; George, Q. Huang Synchroperation in industry 4.0 manufacturing. Int. J. Prod. Econ. 2021, 238, 108171.
2. Mehami, J.; Nawi, M.; Zhong, R.Y. Smart automated guided vehicles for manufacturing in the context of Industry 4.0. In Pro-ceedings of the 46th SME North American Manufacturing Research Conference, NAMRC 46, Texas, USA, 18–22 June 2018; Department of Mechanical Engineering, University of Auckland: Auckland, New Zealand.
3. Automated Guided Vehicle Market, by Component (Hardware, Software, and Service), by Vehicle Type (Tow Vehicle, Forklift Truck, Pallet Truck, and Others), by Navigation Technology, by Application, by End-Use, and by Region Forecast to 2032. Available online: https://www.emergenresearch.com/industry-report/automated-guided-vehicle-market (accessed on).
4. Yang, C.; Lan, S.; Wang, L.; Shen, W.; IEEE; Huang, G.Q.G. Big Data Driven Edge-Cloud Collaboration Architecture for Cloud Manufacturing, Software Defined Perspective. Digit. Object Identifier 2020, 8, 45938–45950. https://doi.org/10.1109/IEEE AC-CESS.2020.2977846.
5. OpenFog Consortium. OpenFog Reference Architecture for Fog Computing. Available online: https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Refere nce_Architecture_2_09_17-FINAL.pdf (accessed on).
6. Oyekanlu, E. Fault-tolerant real-time collaborative network edge analytics for industrial IoT and cyber physical systems with communication network diversity. In Proceedings of the IEEE 4th International Conference on Collaboration and Internet Computing (CIC), Philadelphia, PA, USA, 18–20 October 2018; pp. 336–345.
7. Van Parys, R.; Verbandt, M.; Kotzé, M.; Coppens, P.; Swevers, J.; Bruyninckx, H.; Pipeleers, G. Distributed coordination transportation & localization in industry 4.0. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8.
8. José Ricardo Sánchez-Ibáñez *ORCID,Carlos J. Pérez-del-PulgarORCID andAlfonso García-CerezoORCID "Path Planning for Autonomous Mobile Robots" Space Robotics Laboratory, Department of Systems Engineering and Automation, Universidad de Málaga, C/Ortiz Ramos s/n, 29071 Málaga, SpainReview on Lidar Technology Ninad Mehendale, K. J. Somaiya college of Engineering
9. 1. M. De Rycka, ∗, M. Versteyhea, F. Debrouwerea Automated Guided Vehicle Systems, State-Of-The-Art Control Algorithms and Techniques Volume 54, January 2020, Pages 152-173
10. T. Nishi, S. Akiyama, T. Higashi and K. Kumagai, Cell-based local search heuristics for guide path design of automated guided vehicle systems with dynamic multicommodity flow. IEEE Trans. Autom. Sci. Eng. 2020, 17, 966–980.
11. Kim, S.; Jin, H.; Seo, M.; Har, D. Optimal path planning of automated guided vehicle using dijkstra algorithm under dynamic conditions. In Proceedings of the 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), Daejeon, South of Korea, 1–3 November 2019; pp. 231–236.
12. E. Oyekanlu, "Fault-tolerant real-time collaborative network edge analytics for industrial IoT and cyber physical systems with communication network diversity", Proc. IEEE 4th Int. Conf. Collaboration Internet Comput. (CIC), pp. 336-345, Oct. 2018.
13. De Koster, R., Le-Duc, T., and Roodbergen, K.J. (2007), Design and control of warehouse orderpicking: a literature review. European Journal of Operational Research 182(2), 481-501.
14. Chakra Kumar, V.S.; Sinha, A.; Mallya, P.P.; Nath, N. An approach towards automated navigation of vehicles using overhead cameras. In Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, India, 14–16 December 2017; pp. 1–8.
15. K. Osman, J. Ghommam and M. Saad, "Vision based lane reference detection and tracking control of an automated guided vehicle", Proc. 25th Medit. Conf. Control Autom. (MED), pp. 595-600, Jul. 2017.
16. S.-Y. Lee and H.-W. Yang, "Navigation of automated guided vehicles using magnet spot guidance method", Robot. Comput.-Integr. Manuf., vol. 28, no. 3, pp. 425-436, Jun. 2012.
17. V. K. Kongezos and C. R. Allen, "Wireless communication between AGVs (autonomous guided vehicles) and the industrial network CAN (controller area network)", Proc. IEEE Int. Conf. Robot. Autom., pp. 434-437, May 2002.
18. Emmanuel A. Oyekanlu, David J. Kuhn, Nickolus A. Looper MT&E, Corning Inc., Painted Post, NY, USA.Alexander C. Smith, Dave Hitesh, Mason Ng, Weimin Liu, Dan SunVerizon Wireless, Baskin Ridge, NJ, USA.Windsor P. Thomas, Jason D. cghinnis, Anthony Ng’oma, Michael G. Shultz, Patrick G. Mcbride Corning Optical Communications LLC, Hickory, NC, USA. Grethel Mulroy MT&E, Corning Inc., A Review of Recent Advances in Automated Guided Vehicle Technologies: Integration Challenges and Research Areas for 5G-Based Smart Manufacturing Applications, https://ieeexplore.ieee.org/document/9247159
19. M. De Rycka,∗ , M. Versteyhea , F. Debrouwerea aFaculty of Engineering Technology, KU Leuven, Spoorwegstraat 12, 8200 Bruges, Belgium Automated Guided Vehicle Systems, State-Of-The-Art Control Algorithms and Techniques Journal of Manufacturing Systems Volume 54, January 2020, Pages 152-173
20. D. H. Kim, N. T. Hai, W. Y. Joe, A Guide to Selecting Path Planning Algorithm for Automated Guided Vehicle (AGV), Lecture Notes in Electrical Engineering 465 (2018) 587–596.
21. N. Kokash, An introduction to heuristic algorithms, Department of Informatics and Telecommunications (August) (2005) 1–8.
22. M. H. F. A. Hazza, A. N. Bt Abu Bakar, E. Y. T. Adesta and A. H. Taha, "Empirical study on AGV guiding in indoor manu-facturing system using color sensor", Proc. 5th Int. Symp. Comput. Bus. Intell. (ISCBI), pp. 125-128, Aug. 2017.
23. A. Khamis, A. Hussein, A. Elmogy, Multi-Robot Task Allocation: A Review of the State-of-the-Art, Cooperative Robots and Sensor Networks 2 (2015) 31–51.
24. X. Tang, T. Zhou, J. Yu, J. Wang and Y. Su, "An improved fusion algorithm of path planning for automated guided vehicle in storage system", Proc. IEEE 4th Int. Conf. Comput. Commun. (ICCC), pp. 510-514, Dec. 2018.
25. Ahmad Abbadi, Vaclav Prenosil, Safe Path Planning Using Cell Decomposition Approximation, International Conference Distance Learning, Simulation and Communication (May) (2015).
26. C. Feledy, S. Luttenberger, A State of the art Map of the AGVS Technology and a Guideline for How and Where to Use It, Tech. rep., University of Lund, Lund (2017).
27. S.-Y. Lee and H.-W. Yang, "Navigation of automated guided vehicles using magnet spot guidance method", Robot. Com-put. -Integr. Manuf., vol. 28, no. 3, pp. 425-436, Jun. 2012.
28. Zhang, Y.; Hsiung-Cheng, L.; Zhao, J.; Zewen, M.; Ye, Z.; Sun, H. A multi-DoF ultrasonic receiving device for indoor positioning of AGV system. In Proceedings of the 2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 6–8 December 2018; pp. 97–100.
29. A. P. Vancea, I. Orha A survey in the design and control of automated guided vehicle systems Date: November 8, 2019 Car-pathian Journal of Electronic and Computer Engineering 12/2 (2019) 41-49 ISSN 1844 – 9689 43 https://www.degruyter.com/view/j/cjece
30. Srivastava, S.C.; Choudhary, A.K. Development of an intelligent agent-based AGV controller for a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 2008, 36, 780–797.
31. Maoudj, A.; Kouider, A.; Christensen, A. The capacitated multi-AGV scheduling problem with conflicting products: Model and a decentralized multi-agent approach. Robot. Comput.-Integr. Manuf. 2023, 81, 102514.
32. J. Long and C. L. Zhang, "The summary of AGV guidance technology", Adv. Mater. Res., vol. 591, pp. 1625-1628, Nov. 2012.
33. Fanti, M.P.; Mangini, A.M.; Pedroncelli, G.; Ukovich, W. A decentralized control strategy for the coordination of AGV systems. Control Eng. Pract. 2018, 70, 86–97.
34. M. De Ryck, M. Versteyhe, K. Shariatmadar, Resource Management in Decentralized Industrial Automated Guided Vehicle Systems, Journal of Manufacturing Systems (2019).
35. Bajestani, S.E.M., Vosoughinia, A., “Technical Report of Building a Line Follower Robot” International Conference on Electronics and Information Engineering (ICEIE 2010), vol 1, pp v1-1 v1-5,2010.
36. Kelly, A., Nagy, B. "Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control", The International Journal of Robotics Research, Vol. 22, No. 7-8, 583-601 (2003)
37. C. Liu, A. Kroll, A centralized multi-robot task allocation for industrial plant inspection by using A* and genetic algorithms (2012).
38. W. Hu, Y. Zhu, J. Lei, The Detection and Prevention of Deadlock in Petri Nets, Physics Procedia 22 (2011) 656–659.
39. M. J¨ager, B. Nebel, Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots, IEEE International Conference on Intelligent Robots and Systems 3 (2001) 1213–1219.
40. Yang, H.; Kumara, S.; Bukkapatnam, S.; Tsung, F. The Internet of Things for Smart Manufacturing: A Review; Taylor & Francis: New York, NY, USA, 2019.
41. Shariatmadari, H.; Ratasuk, R.; Iraji, S.; Laya, A.; Taleb, T.; Jäntti, R.; Ghosh, A. Machine-type communications: Current status and future perspectives toward 5G systems. IEEE Commun. Mag. 2015, 53, 10–17.
42. Wu, E.H.-K.; Sahoo, J.; Liu, C.-Y.; Jin, M.-H.; Lin, S.-H. Agile Urban Parking Recommendation Service for Intelligent Vehicular Guiding System. IEEE Intell. Transport. Syst. Mag. 2014, 6, 35–49.
43. Okumus, F.; Kocamaz, A.F. Cloud based indoor navigation for ROS-enabled automated guided vehicles. In Proceedings of the 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 21–22 September 2019; pp. 1–4.
44. Baliga, J.; Ayre, R.; Hinton, K.; Sorin, WV.; Rodney, S. Tucker Energy Consumption in Optical IP Networks. J. Light. Technol. 2009, 27, 2391–2403.
45. What is Client-Server System: Architecture, Issues and Challenge of Client -Server System Sawsan Ali Hamid1*, Rana Alaudeen Abdulrahman2, Dr.Ruaa Ali Khamees3 1College of Computer Science, Tikrit University, Tikrit, Iraq. 2,3Institute of Technology, Middle Technical University, Baghdad, Iraq.
46. ANKUR SARKER, HAIYING SHEN, and JOHN A. STANKOVIC university of Virginia, USA MORP: Data-Driven Multi-Objective Route Planning and Optimization for Electric Vehicles
47. 97 Page www.ijacsa.thesai.org Optimal Path Planning using RRT* basedApproaches: A Survey and Future Directions, Iram Noreen, Department of Computer ScienceCOMSATS Institute of InformationTechnologyLahore, Pakistan. Amna Khan, Department of Computer ScienceCOMSATS Institute of InformationTechnologyLahore, Pakistan. Zulfiqar Habib, Department of Computer ScienceCOMSATS Institute of InformationTechnologyLahore, Pakistan
48. P. Pratama, T. Nguyen, H. Kim, D. Kim and S. Kim, "Positioning and obstacle avoidance of automatic guided vehicle in partially known environment", Int. J. Control Automat. Syst., vol. 14, no. 6, pp. 1572-1581, 2016.
49. P. R. C, S. M. ´ C, Dynamic Programming Approach for the ´ Allocation of Limited Resources, Metalurgia International XVII (11) (2012) 2–5.
50. The Principle of Image Processing Technology and Application. Available online: http://web.ncyu.edu.tw/~lanjc/lesson/C9/class/11.pdf.
51. Chien, C.L.; Tseng, D.C. Color image enhancement with exact HIS color model. Int. J. Innov. Comput. Inf. Control 2011, 7, 6691–6710.
52. Converting from RGB to HSV. Available online: http://coecsl.ece.illinois.edu/ge423/spring05/group8/finalproject/hsv_writeup.pdf.
53. Ma, S.; Ma, H.; Xu, Y.; Li, S.; Lv, C.; Zhu, M. A Low-Light Sensor Image Enhancement Algorithm Based on HSI Color Model. Sensors 2018, 18, 3583.
54. Emgu, C.V. Essentials; Packt Publishing: Birmingham, UK, 2013.
55. Emgu, C.V. Example Camera Capture. Available online: http://me1237guy.pixnet.net/blog/post/61361335.
56. Holzinger, A. From machine learning to explainable AI. In Proceedings of the 2018 World Symposium on Digital Intelligence for Systems and Machines (DISA), Košice, Slovakia, 23–25 August 2018; pp. 55–66.
57. Kamoshida, R.; Kazama, Y. Acquisition of automated guided vehicle route planning policy using deep reinforcement learning. In Proceedings of the 2017 6th IEEE International Conference on Advanced Logistics and Transport (ICALT), Bali, Indonesia, 24–27 July 2017; pp. 1–6.
58. The Stepper Motors Controller Practices by Arduino Technology,, 2014-02-25 ISBN/ISSN:9789869035606
59. Pulse-Width Modulation (PWM), http://wiki.csie.ncku.edu.tw/embedded/PWM Online electricity knowledge, Published online Available: http://bbs.audiohall.net/viewtopic.php?t=1337&sid=999
60. Y. Shu, Z. Li, B. Karlsson, Y. Lin, T. Moscibroda and K. Shin, "Incrementally-deployable Indoor Navigation with Automatic Trace Generation," IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 2395-2403, doi: 10.1109/INFOCOM.2019.8737442.
61. J. Guo, P. Hu, L. Li and R. Wang, "Design of automatic steering controller for trajectory tracking of unmanned vehicles using genetic algorithms", IEEE Transactions on Vehicular Technology, vol. 61, no. 7
62. S. Akiyama, T. Nishi, T. Higashi, K. Kumagai and M. Hashizume, "A multi-commodity flow model for guide path layout design of AGV systems", Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage. (IEEM), pp. 1251-1255, Dec. 2017.
63. X. Yan, C. Zhang and M. Qi, "Multi-AGVs collision-avoidance and deadlock-control for item-to-human automated warehouse", Proc. Int. Conf. Ind. Eng. Manage. Sci. Appl. (ICIMSA), pp. 1-5, Jun. 2017.
64. I. Mugarza and J. C. Mugarza, "Towards collision-free automated guided vehicles navigation and traffic control", Proc. 24th IEEE Int. Conf. Emerg. Technol. Factory Autom. (ETFA), pp. 1599-1602, Sep. 2019.
65. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging Technologies. IEEE Access 2020, 8, 58443–58469.
66. L. Makarem, M.-H. Pham, A.-G. Dumont and D. Gillet, "Microsimulation modeling of coordination of automated guided vehicles at intersections", Transp. Res. Rec. J. Transp. Res. Board, vol. 2324, no. 1, pp. 119-124, Jan. 2012.
67. Arduino Mini USB Adapter, Published online Available: http://elesson.tc.edu.tw/md221/pluginfile.php/4151/mod_resource/content/1/arduino.pdf
68. Arduino interactive design , 2014-08-12, ISBN:9789863471004
69. D.K. Chwa, "Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances", IEEE Transactions on Fuzzy Systems, vol. 20, no. 3, June 2012.
70. Design and Implementation of Fuzzy Control for the Autonomous Vehicle, July 2007, National Chiao-Tung University
71. Analysis of Moving Average Convergence Divergence (MACD) as a Tool of Equity Trading at the Karachi Stock Exchange Abdul Waheed Samuel Asmah Fredrik Jorgensen Master’s Thesis in Business Administration, MBA programme
指導教授 吳曉光(Hsiao-Kuang Wu) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明