參考文獻 |
[1] T. Caswell, S. Henson, M. Jensen, and D. Wiley, “Open content and open educational resources: Enabling universal education,” Int. Rev. Res. Open Distribution. Learn., vol. 9, no. 1, 2008.
[2] E. Tovar and N. Piedra, “Guest editorial: open educational resources in engineering education: various perspectives opening the education of engineers,” IEEE Trans. Educ., vol. 57, no. 4, pp. 213–219, 2014.
[3] D. White, M. Manton, and N. Warren, “Open Educational Resources: The value of reuse in higher education,” Creative Commons, 2011.
[4] E. Tovar, H. Chan, and S. Reisman, “Promoting MERLOT Communities Based on OERs in Computer Science and Information Systems,” in Computer Software and Applications Conference (COMPSAC), IEEE 41st Annual, vol. 2, pp. 700–706, 2017.
[5] Learning Technology Standards Committee, “Approved Working Draft of the IEEE Learning Technology Standards Committee (LTSC),” Learning Object Metadata Working Group, IEEE P1484, 2000.
[6] N. Piedra, J. Chicaiza, J. López, E. Tovar, and O. Martinez, “Finding OERs with social-semantic search,” in Global Engineering Education Conference (EDUCON), IEEE, pp. 1195–1200, 2011.
[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Sci. Am., vol. 284, no. 5, pp. 34–43, 2001.
[8] N. Piedra, E. Tovar, R. Colomo-Palacios, J. Lopez-Vargas, and J. Alexandra Chicaiza, “Consuming and producing linked open data: the case of Opencourseware,” Program, vol. 48, no. 1, pp. 16–40, 2014.
[9] J. Lopez-Vargas, N. Piedra, J. Chicaiza, and E. Tovar, “OER Recommendation for Entrepreneurship Using a Framework Based on Social Network Analysis,” IEEE Rev. Iberoam. Tecnol. del Aprendiz., vol. 10, no. 4, pp. 262–268, 2015.
[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Proc. Workshop at ICLR, 2013.
[11] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed Representations of Words and Phrases and their Compositionality,” Proc. NIPS, 2013.
[12] T. Mikolov, W.Yih, and G. Zweig, “Linguistic Regularities in Continuous Space Word Representations,” Proc. NAACL HLT, 2013.
[13] M. Tomas, C. Kai, C. Greg, and D. Jeffrey, “Efficient estimation of word representations in vector space,” Computer Science, 2013.
[14] V. V. Raghavan, and S. K. M. Wong, “A critical analysis of vector space model for information retrieval.” Journal of the American Society for Information Science, vol. 37, pp. 279–87.16, 1986.
[15] S. Vaidya, and A. Jayshree, "Natural Language Processing Preprocessing Techniques," International Journal of Computer Engineering and Applications, Volume XI, Special Issue, www.ijcea.com ISSN 2321-3469, 2017.
[16] D. M. Blei, “Probabilistic topic models,” Communications of the ACM, 55(4), pp.77-84, 2012.
[17] G. Bettina, and H. Kurt, “Topic models: An R Package for Fitting Topic Model”, Journal of Statistical Software, vol. 40, No. 13, 2011.
[18] D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent dirichlet allocation.” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003
[19] C. K. Yau, A. Porter, N. Newman, and A. Suominen, “Clustering scientific documents with topic modeling,” Scientometrics, vol. 100, no. 3, pp. 767–786, 2014.
[20] “Topic Modeling with LDA and NMF” [Online] https://medium.com/ml2vec/topic-modeling-is-an-unsupervised-learning-approach-to-clustering-documents-to-discover-topics-fdfbf30e27df [Accessed: 15-Jan-2019]
[21] R. E. Schapire, and Y. Singer, “BoosTexter: A boosting-based system for text categorization,” Machine learning, 39(2-3), pp.135-168, 2000.
[22] C. E. Moody, “Mixing dirichlet topic models and word embedding to make lda2vec.” arXiv preprint arXiv:1605.02019, 2016.
[23] Y. Yang, “An evaluation of statistical approaches to text categorization.” Information Retrieval, vol. 1, pp. 69–90, 1999.
[24] K. A Vidhya. and G. Aghila. “A survey of Na¨ıve bayes machine learning approach in text document classification,” International Journal of Computer Science and Information Security, 7, 206–211.15, 18, 24, 2010.
[25] R. Kumar, and R. Verma, “Classification Algorithms for Data Mining:A Survey”, In Engineering International Journal of Innovations and Technology (IJIET), vol. 1, Issue 2 , pp. 7-14, 2012.
[26] M. M. García, R. P. Rodríguez, L. A. Rifón, and M. V. Ferro, “Towards a multi-label classification of open educational resources,” In IEEE 15th International Conference on Advanced Learning Technologies, pp. 407-408, 2015.
[27] G. Moise, M. Vladoiu, and Z. Constantinescu, “MASECO: a multi-agent system for evaluation and classification of OERs and OCW based on quality criteria,” In E-Learning Paradigms and Applications, pp. 185-227, 2014.
[28] G. Tsoumakas, I. Katakis, “Multi-label Classification: An Overview,” International Journal of Data Warehousing and Mining, vol. 3, No. 3, pp. 1-13, 2007.
[29] M.R. Boutell, Luo J., Shen X., C.M. Brown, “Learning multi-label scene classification,” Pattern recognition, vol. 37, No. 9, pp. 1757-1771, 2004.
[30] A. Santos, A. Canuto, and A.F. Neto, “A comparative analysis of classification methods to multi-label tasks in different application domains,” International Journal of Computer Information Systems and Industrial Management Applications, vol. 3, pp. 218-227, 2011.
[31] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” In Data mining and knowledge discovery handbook, Springer, 2009.
[32] G. Tsoumakas, I. Katakis, and I. Vlahavas, I., “Random k-labelsets for multilabel classification,” IEEE Transactions on Knowledge and Data Engineering, vol. 23, No. 7, pp.1079-1089, 2010.
[33] R. E Schapire, and Y. Singer, “BoosTexter: A boosting-based system for text categorization,” Machine learning, vol. 39, No. 2-3, pp.135-168, 2000.
[34] S. Godbole, and S. Sarawagi, “Discriminative methods for multi-labeled classification,” In Pacific-Asia conference on knowledge discovery and data mining, pp. 22-30, 2004.
[35] M. L. Zhang, and Z.H. Zhou, “ML-KNN: A lazy learning approach to multi-label learning,” Pattern recognition, vol. 40, No. 7, pp.2038-2048, 2007.
[36] S. Burkhardt, and S. Kramer, “Online multi-label dependency topic models for text classification,” Machine Learning, vol. 107, No. 5, pp.859-886, 2018.
[37] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, and Y. Liu, “SHRINK: a structural clustering algorithm for detecting hierarchical communities in networks,” in Proceedings of the 19th ACM international conference on Information and knowledge management, pp. 219–228, 2010.
[38] D. Húsek, J. Pokorn`y, H. vRezanková, and V. Snášel, “Web data clustering,” in Foundations of Computational Intelligence, vol. 4, pp. 325–353, 2009.
[39] Y. Bédard, T. Merrett, and J. Han, “Fundamentals of spatial data warehousing for geographic knowledge discovery,” Geogr. data Min. Knowl. Discov., vol. 2, pp. 53–73, 2001.
[40] R. Forsati, M. Mahdavi, M. Shamsfard, and M. R. Meybodi, “Efficient stochastic algorithms for document clustering,” Inf. Sci. (Ny)., vol. 220, pp. 269–291, 2013.
[41] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, and others, “A density-based algorithm for discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96, no. 34, pp. 226–231, 1996.
[42] B. Rao and B. K. Mishra, “An approach to clustering of text documents using graph mining techniques,” Int. J. Rough Sets Data Anal., vol. 4, no. 1, pp. 38–55, 2017.
[43] G. Marchionini, “Exploratory search: from finding to understanding,” Commun. ACM, vol. 49, no. 4, pp. 41–46, 2006.
[44] M. O. Ward, G. Grinstein, and D. Keim, “Interactive data visualization: foundations, techniques, and applications” CRC Press, 2010.
[45] J. Ahn and P. Brusilovsky, “Adaptive visualization of search results: Bringing user models to visual analytics,” Inf. Vis., vol. 8, no. 3, pp. 167–179, 2009.
[46] E. Clarkson, K. Desai, and J. Foley, “Resultmaps: Visualization for search interfaces,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6, 2009.
[47] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp.53-65, 1987.
[48] G. Maheshwari, P. Trivedi, H. Sahijwani, K. Jha, S. Dasgupta, and J. Lehmann, “SimDoc: Topic Sequence Alignment based Document Similarity Framework.” In Proceedings of the Knowledge Capture Conference, pp. 1-8, 2017. |