博碩士論文 103622602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.139.85.192
姓名 方熙蒂(Siti Fatimah)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 以微地動分析宜蘭盆地S波速度構造
(S-Wave Velocity Structure in the Ilan Basin from Microtremor Analysis)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
★ 利用時頻分析技術檢視土壤非線性反應★ 台灣潛勢地震之發生機率評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 宜蘭盆地為一覆蓋著鬆散第四紀沖積層的沈積平原,其下是堅硬的中新世基盤,此高地層速度落差之盆地構造易放大地震動影響。由於此地區地震頻仍,是台灣高地震風險的區域之一,詳細的S波速度構造有助於地動場址效應之研究。宜蘭盆地已有密集的微地動量測分析資料,本研究利用微地動單站頻譜比擬合技術,以Haskell-Thomson法所計算出來的地層轉換函數與所觀察到的單站頻譜比作比對擬合,進而估算S波速度構造。研究中以氣象局強震站之接收函數分析結果和強震測站場址工程地質資料庫的鑽探岩心資料作為速度剖面之初始模型,利用基因演算法找到各測點最佳的S波速度剖面。
宜蘭盆地的基盤和淺部三個地層之構造形貌皆透過本研究結果描繪出來,基盤等高線圖與過去研究結果相似,但透過密集且平均的測點分佈獲得更為平滑且詳細的形貌。最上層的鬆軟土層於宜蘭東部沿岸厚達250公尺,S波速度為150 至400m/s之間。其下的沖積層的速度範圍在300 至700 m/s。第三層為更新世地層,其厚度為10 至 800公尺間不等,越往東則越厚。盆地底部之基盤面深度在30 至 1300 公尺間,地層S波速度為900 至1500 m/s。根據歷史地震地表加速度峰值和速度峰值分布比對,顯示地表加速度峰值可能和盆地構造較無顯著關連,而是受震源效應或路徑效應影響,而地表速度峰值的分布則明顯由基盤構造所控制。
摘要(英) Microtremor measurements had been conducted in the Ilan basin, one of the most vulnerable area in Taiwan regarding earthquakes. The Ilan basin is a delta filled with unconsolidated Quaternary alluvium with underlying Miocene basement, which may give great effect in the ground shaking characteristic due to its strong impedance contrast. As the area is prone to earthquakes, detailed velocity structure is important for site effect studies. An approach is proposed in this research, to estimate S-wave velocity structure from microtremor data using horizontal-to-vertical (H/V) spectral ratio simulation. The theoretical transfer function of Haskell-Thomson matrix is calculated and compared to the observed H/V spectrum. The velocity profiles derived from Receiver Function (RF) analysis of the nearby Taiwan Strong Motion Instrumentation Program (TSMIP) stations and borehole data from Engineering Geological Database for TSMIP (EGDT) are used as the initial model. Genetic Algorithm (GA) searching method is applied to find the best fit solution of S-wave velocity profiles on each site.
Structure maps are derived from the simulation results for top basement structure and the upper three layers. The basement contour derived in this study has similar characteristic with the basement contour presented by previous studies. Due to a dense and even measurement sites in this study, the structure obtained in this study is smoother and more detail. Based on the analysis, it is identified that the thickness of the uppermost soft soil layer reaches 250 m in the coastline in the east of Ilan with velocity between 150 – 400 m/s. This structure also represents the depth of top Alluvium layer whose velocity ranges from 300 – 700 m/s. The depth of Alluvium – Pleistocene layer boundary varies between 10 – 800 m, where the structure tends to gradually gets deeper to the east. The top basement has depth between 30 – 1300 m, with velocity of 900 – 1500 m/s. The PGA and PGV contour derived by Chang (2009) show that the PGA distribution may not related to the structure but rather affected by the source and/or path effect and that the PGV distribution value is controlled by the basement structure.
關鍵字(中) ★ microtremor
★ S-wave velocity
★ structure maps
★ H/V simulation
關鍵字(英)
論文目次 Table of Contents
Chinese Abstract i
Abstract iii
Acknowledgements v
Table of Contents vii
List of Tables viii
Table of Figures ix
Chapter 1 Introduction 1
1.1. Literature of Study 1
1.2. Structure of This Thesis 3
Chapter 2 Data Description 11
2.1. Geological Setting 11
2.2. Microtremor Data 11
2.3. TSMIP Data 12
Chapter 3 Methodology 25
3.1. Microtremor 25
3.2. Horizontal-to-Vertical (H/V) Spectral Ratio 25
3.3. Genetic Algorithm (GA) 27
3.4. Fitness Function 28
3.5. Data Processing 29
Chapter 4 Results and Discussion 35
4.1. Simulation 35
4.2. Velocity Structure 36
4.3. Comparison with Previous Study 38
4.4. Map of Z1.0 and VS30 40
4.5. Map of PGA and PGV 41
Chapter 5 Summary and Conclusion 63
References 65
Appendix A 67
Appendix B 99
Appendix C 131
參考文獻 References
Angelier, J. et al., 2008. Does Extrusion Occur at Both Tips of the Taiwan Collision Belt? Insights from Active Deformation Studies in the Ilan Plain and Pingtung Plain Regions.. Tectonophysics.
Chang, C.-H., Lin, T.-L., Wu, Y.-M. & Chang, W.-Y., 2010. Basement Imaging Using Sp Converted Phases from a Dense Strong-Motion Array in Lan-Yang Plain, Taiwan. Bull. Seism. Soc. Am., 100(3), pp. 1363-1369.
Chang, S.-C., 2009. A study on the Classification of Site Effects and Its Correction in Attenuation Relationship of Peak Ground Velocity (in Chinese with English abstract), Taoyuan: National Central University.
Chiang, S.-C., 1976. A Seismic Refraction Prospecting of the Ilan Plain. Minging Tech., 14, pp. 215-221.
Chiou, B. S.-J. & Youngs, R. R., 2008. An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 24(1), pp. 173-215.
Hou, C.-S., Hu, J-C., Ching, K-E., Chen, Y-G., Chen, C-L., Cheng, L-W., Tang, C-L., Huang, S-H., Lo, C-H., 2009. The Crustal Deformation of the Ilan Plain Acted as a Westernmost Extension of the Okinawa Trough. Tectonophysics, 466, pp. 344-355.
Huang, J.-Y., 2009. Using Microtremor Measurement to Study the Site Effect in Taiwan Area, Taoyuan: National Central University.
Huang, Y.-Z., 2003. Site Effect Studies in Lan-Yang Plain, Taoyuan: National Central University.
Kuo, C.-H., Wen, K-L., Hsieh, H-H., Lin, C-M., Chang, T-M., Kuo, K-W., 2012. Site Classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, pp. 68-75.
Lee, C.-T. & Tsai, B.-R., 2008. Mapping Vs30 in Taiwan. Terr. Atmos. Ocean. Sci., 19(6), pp. 671-682.
Lermo, J. & Chavez-Garcia, F. J., 1994. Are Microtremors Useful in Site Response Evaluation?. Bull. Seism. Soc. Am., 84(5), pp. 1350-1364.
Lin, C.-M., 2003. Shallow Structure beneath Lan-Yang Plain using High-Frequency Receiver Function Technique (in Chinese), Taoyuan: National Central University.
Lin, C.-M., Wen, K.-L., Kuo, C.-H. & Lin, C.-Y., 2014. S-Wave Velocity Model of Taipei Basin. Taipei, Taiwan, The 5th Asia Conference on Earthquake Engineering.
Liu, K.-S., Shin, T.-C. & Tsai, Y.-B., 1999. A Free-Field Strong Motion Network in Taiwan: TSMIP. Terrestrial, Atmospheric and Oceanic Sciences, 10(2), pp. 377-396.
Mitchell, M., 1999. An Introduction to Genetic Algorithms. London: Massachusetts Institute of Technology.
Nakamura, Y., 1989. A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface, Tokyo: Railway Technical Research Institute.
Nakamura, Y., 2008. On the H/V Spectrum. Beijing, China, The 14th World Conference on Earthquake Engineering.
Pilz, M., Parolai, S., Picozzi, M., Wang, R., Leyton, F., Campos, J., Zschau, J., 2010. Shear Wave Velocity Model of The Santiago de Chile Basin Derived from Ambient Noise Measurements; A Comparison of Proxies for Seismic Site Conditions and Amplification. Geoph. J. Int., 182, pp. 355-367.
Pilz, M., Parolai, S., Picozzi, M. & Zschau, J., 2011. Evaluation of Proxies for Seismic Site Conditions in Large Urban Areas: The Example of Santiago de Chile. Physics and Chemistry of the Earth, 36, pp. 1259-1266.
Reiter, L., 1991. Earthquake Hazard Analysis. New York: Columbia University Press.
Riahi, N., 2013. Statistics of Ambient Seismic Noise: Investigations into Spectral Attributes and Multi-Component Array Processing, Zurich: ETH Zurich.
Sambridge, M. & Gallagher, K., 1993. Earthquake Hypocenter Location using Genetic Algorithm. Bull. Seism. Soc. Am, 83(5), pp. 1467-1491.
Seht, M. I.-v. & Wohlenberg, J., 1999. Microtremor Measurements Used to Map Thickness of Soft Sediments. Bull. Seism. Soc. Am., 89(1), pp. 250-259.
Shi, Z.-W., 2011. Investigating the Basement Depth and Tectonic Evolution in Ilan Plain by Seismic Reflection Method (in Chinese, with English abstract), Taoyuan: National Central University.
Teng, L. S., 1996. Extensional Collapse of the Northern Taiwan Mountain Belt. Geology, 24, pp. 949-952.
Teng, L. S., Lee, C. T., Tsai, Y. B. & Hsiao, L.-Y., 2000. Slab breakoff as a mechanisme for flipping of subdution polarity in Taiwan. Geology, 28(2), pp. 155-158.
Wen, K.-L. & Yeh, Y.-T., 1984. Seismic Velocity Structure Beneath the SMART 1 Array. Bulletin of the Institute of Earth Sciences, Academia Sinica, 4, pp. 51-72.
Zhang, J.-W., 2010. Detecting the Basement and the Faults under the Ilan Plain, Northeastern Taiwan, using Seismic Reflection Method (in Chinese with English abctract), Taoyuan: National Central Uinversity.
指導教授 溫國樑(Kuo-Liang Wen) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明