博碩士論文 104226012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.191.165.252
姓名 羅承瑋(Cheng-Wei Luo)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以濺鍍法製作n-type重摻雜鍺薄膜於 太陽能電池之應用
(Fabrication of N-type Heavily Doped Germanium Thin Films by Magnetron Sputtering for the Application of Solar Cell)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 至今化石能源逐漸耗竭,須有新的能源作為取代,而乾淨、環保、再利用的綠色能源為最受矚目及未來性的趨勢,其中以太陽能電池最具代表性。在當今眾多種類的太陽能電池中,III-V族多接面太陽能電池的轉換效率最佳,本實驗團隊將以濺鍍法在矽基板上鍍製n-type重摻雜鍺薄膜,形成一種可應用於III-V族半導體磊晶製程之新型Ge-Si基板,重摻雜之n-type膜層未來可以做為穿隧接面之應用,讓元件達到電流匹配,使III-V族多接面太陽能電池效率達到最佳化。
本論文研究之n-type重摻雜鍺薄膜的實驗架構為:1.改變製程溫度和濺鍍功率,測試出最佳鍍膜參數。2.以最佳鍍膜參數的樣品進行爐管熱退火,探討不同退火溫度及時間對鍺薄膜結晶性與摻雜濃度的改變。3.將n-type重摻雜鍺薄膜的厚度設計在100 nm以下,並研究其厚度對結晶性與摻雜濃度的影響。以此架構所製作的n-type重摻雜鍺薄膜,濺鍍厚度約為500 nm,在最佳化製程條件下,XRD量測分析半高寬為最小,摻雜濃度可大於1019 cm-3,而厚度設計在100 nm時,其摻雜濃度也可大於1018 cm-3。
摘要(英)
In this study, n-type heavily doped germanium(Ge) thin films on silicon substrates by using magnetron sputtering method was investigated. Since the conversion efficiency of III-V multi-junction solar cell is still the highest, the n-type Ge films on silicon can be the virtual substrates to replace the high-cost Ge substrates. We used magnetron sputtering system with Sb/Ge alloyed target to grow the n-type heavily doped Ge films on Si (100) wafer. And the post annealing process was applied to improve the Ge thin film qualities. XRD, Raman spectrometer, AFM were used to analyze the crystallization of the Ge thin films. The Hall measurement was also applied to measure the carrier concentration and mobility of the n-type Ge thin films. The results showed the FWHM of the Ge (400) diffraction peak of Ge thin films can be improved as low as 0.3°. And the Hall measurement showed the carrier concentration of n-type Ge thin film can be increased to more than 1019cm-3.
關鍵字(中) ★ 重摻雜
★ 鍺薄膜
★ 濺鍍法
★ 太陽能電池
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 3
1-3論文架構 6
第二章 文獻回顧 7
2-1 鍺材料應用 7
2-2 鍺薄膜常見的鍍製方式 8
2-3 N-type 鍺薄膜的相關研究 9
第三章 實驗流程和設備與分析工具 13
3-1 實驗流程 13
3-2 實驗設備與分析工具 13
3-2-1 濺鍍設備 13
3-2-2 X光繞射儀 14
3-2-3 拉曼光譜儀 15
3-2-4 霍爾量測儀 16
3-2-5 原子力顯微鏡(Atomic Force Microscope, AFM) 18
3-2-6 退火系統 19
第四章 於矽基板上鍍製n-type鍺薄膜 20
4-1調變製程溫度鍍製銻鍺薄膜 20
4-2調變濺鍍功率鍍製銻鍺薄膜 30
4-3銻鍺薄膜在退火系統分析 38
4-4調變銻鍺薄膜厚度 47
第五章 結論與未來工作 54
5-1結論 54
5-2未來工作 55
參考文獻 56
參考文獻
[1] 張品全,科學發展,349,23-29,2002
[2] M. A. Green著,曹昭陽,狄大衛,李秀文譯,太陽電池工作原理,技術與系統應用,五南出版社 ,2009
[3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar cell efficiency tables (Version 45)” Photovoltaics: Research and Applications, Vol 23, pp. 1–9, January 2015
[4] Silicon solar cell efficiency at 26.6% within 10% of theoretical silicon solar efficiency limit of 29.1%. March 26, 2017
Available from: http://www.nextbigfuture.com/2017/03/silicon-solar-cell-efficiency-at-266.html
[5] Sharp IMM triple-junction compound solar cell. April 24, 2013
Available from: http://sharp-world.com/corporate/news/130424.html
[6] P. Chiu, D. Law, R. Woo, S. Singer, D. Bhusari, W. Hong, A. Zakaria, J. Boisvert, S. Mesropian and R. King, “35.8% space and 38.8% terrestrial 5J direct bonded cells”, Photovoltaic Specialist Conference (PVSC), IEEE 40th, 2014
[7] F. Dimroth, T. N. D. Tibbits, M. Niemeyer, F. Predan, P. Beutel, C. Karcher, E. Oliva, G. Siefer, D. Lackner, P. Fuß-Kailuweit, A. W. Bett, R. Krause, C. Drazek, E. Guiot, J, Wasselin, A, Tauzin, and T, Signamarcheix, “Four-Junction Wafer-Bonded Concentrator Solar Cells”, IEEE Journal of Photovoltaics , Vol. 6, Issue 1, Jan. 2016
[8] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%”, physica status solidi (RRL)-Rapid Research Letters, Vol 10, Issue 8, pp. 583–586, August 2016
[9] Perovskite Solar Cells Shine in the “Valley of the Sun”.
Available from: http://pubs.acs.org/journal/aelccp
[10] Available from: https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[11] M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential”, Solar Energy, Vol. 79, Issue 1, pp. 78-85, July 2005
[12] R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells”, Presented at the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, pp. 21-25, Sep. 2009
[13] The bandgap energies are plotted as a function of the lattice constants of major III-V and II-VI materials.
Available from: http://asumbe.eas.asu.edu/research_Highlights.htm
[14] J.M. Kang , M. Nouaoura, L. Lassabatère, A. Rocher, “Accommodation of lattice mismatch and threading of dislocations in GaSb films grown at different temperatures on GaAs (001)”, Journal of Crystal Growth Vol. 143, Issue 115-123, ELSEVIER, 1994
[15] C. Claeys, and E. Simoen, “Germanium-based technologies: from materials to devices”, 2011
[16] G. S. Kinsey, P. Hebert, K. E. Barbour, D. D. Krut, H. L. Cotal, R. A. Sherif, “Concentrator multijunction solar cell characteristics under variable intensity and temperature”, Photovoltaics: Research and Applications, Vol. 16, Issue 6, pp. 503–508, Sep. 2008 [17] 羅吉宗,薄膜科技與應用,第四版,全華圖書出版社,2013
[18] 國家實驗研究院儀器科技研究中心,真空技術與應用,財團法人國家實驗研究院儀器科技研究中心,2010
[19] 簡禎富,施義成,林振銘,陳瑞坤,半導體技術與管理,全華圖書出版社,2005
[20] N. Higashitarumizu, K. Wada, and Y. Ishikawa, “Enhanced photoluminescence from n+-Ge epitaxial layers on Si: effect of growth/annealing temperature” Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2015 11th Conference on, IEEE, Jan. 2016
[21] Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells”, APPLIED PHYSICS LETTERS, Vol. 101, Issue 23 , 2012
[22] W. Yeh, A. Matsumoto, and K. Sugihara, “Sputter epitaxy of heavily doped p+/n+ Ge film on Si(100) by cosputtering with Al/Sb for solar cell application”, Japanese Journal of Applied Physics, Vol. 54, July 2015
[23] R. Geiger, J. Frigerio, M. J. Suess, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Excess carrier lifetimes in Ge layers on Si”, APPLIED PHYSICS LETTERS, Vol. 104, Issue 6, 2014
[24] K, Nishida, X. Xu, K. Sawano, T. Maruizumi, Y. Shiraki, “Highly n-doped, tensile-strained Ge grown on Si by molecular beam epitaxy”, Thin Solid Films, Vol. 557 , pp. 66–69, April 2014
[25] X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si”, APPLIED PHYSICS LETTERS, Vol. 95, Issue 1, 2009
[26] R. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct band gap narrowing in highly doped Ge”, APPLIED PHYSICS LETTERS, Vol. 102, Issue 15, 2013
[27] X-ray diffraction – Bruker D8 Discover.
Available from: https://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover
[28] Raman spectroscopy.
Available from: https://en.wikipedia.org/wiki/Raman_spectroscopy
[29] Hall effect.
Available from: http://ezphysics.nchu.edu.tw/prophys/basicexp/expnote/hall/hall_97Feb.pdf
[30] atomic force microscope, AFM.
Available from: http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[31] Annealing.
Available from: https://en.wikipedia.org/wiki/Annealing_(metallurgy)
[32] RCA clean.
Available from: https://en.wikipedia.org/wiki/RCA_clean
[33] 黃鼎育,IV族半導體基板鈍化層研究,國立中央大學碩士論文 ,2014
[34] 國家實驗研究院儀器科技研究中心,真空技術與應用,財團法人國家實驗研究院儀器科技研究中心,2010
[35] R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Optical Materials Express , Vol. 2, Issue 11, pp. 1462-1469, 2012
[36] C.-Y. Tsao, J.W. Weber, P. Campbell, P.I. Widenborg, D. Song and M.A. Green, “Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications”, Applied Surface Science, Vol. 255, Issue 15, pp. 7028-7035, 2009
[37] Y. Yamamoto, P. Zaumseil, T. Arguirov, M. Kittler, B. Tillack, “Low threading dislocation density Ge deposited on Si (1 0 0) using RPCVD”, Solid-State Electronics, Vol. 60, pp. 2-6, 2011
[38] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells”, Science, Vol. 285, Issue 5428, pp. 692-698, 1999
[39]D. Eaglesham and M. Cerullo, “Dislocation-free stranski-krastanow growth of Ge on Si (100)”, Physical Review Letters, Vol. 64, Issue 16, 1990
[40]W. Hu, B. Cheng, C. Xue, S. Su, Z. Liu, Y. Li and Q. Wang, “Epitaxy of Ge on offcut Si substrate for growth of In0. 01Ga0. 99As”, Group IV Photonics (GFP), 2011 8th IEEE International Conference on, IEEE, 2011
[41] S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films, Vol. 520, Issue 6, pp. 2307-2310, 2012
指導教授 陳昇暉 審核日期 2017-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明