博碩士論文 104226032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.116.85.96
姓名 林俊佑(Chun-Yu Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以雷射直寫於織物上製作可拉伸之銀導線
(Stretchable Conductive Silver Wire Fabricated on Textile by Direct Laser Writing)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以雷射直寫技術結合有機銀導電油墨在緯編針織聚酯纖維織物上製作銀導線叢(以下稱為導線)。首先,在波長532 nm連續波雷射照射下我們觀察到銀奈米粒子在織物上還原以及沉積的過程。當雷射功率密度大於95.2 mW/mm2時,一個步驟便可在織物上製作出~3 Ω/cm的導線。
接下來,我們根據ASTM D257-07標準並以最佳的雷射直寫參數製作1 cm × 1 cm方形導電織物量測電阻率,其面電阻率為69.6 Ω/□與81.2 Ω/□之間,是ITO玻璃面電阻率的3至4倍左右,顯示以雷射直寫於織物上製作電磁屏蔽的潛力。
最後,我們量測導線在拉伸-回復循環過程中電阻變化對應變的關係。結果顯示,在100 %拉伸-回復應變量下沿著導線經向方向的電阻變化量為~1150 %大於緯向方向的電阻變化量~30 %,這表示織物上的導線可作為二維應變感測元件;此外,導線經過多次拉伸-回復應變循環後高的可重覆特性,應用在智慧織物領域上是極具有潛力的。
摘要(英) In this study, the metallization of weft-knitted polyester textile exploiting direct laser writing (DLW) technique in combination of silver-based organometallic ink was reported. Under the irradiation of green laser light (λ = 532 nm), silver was reduced and deposited on polyester fabrics, forming silver wire bundles (hereinafter called silver wires). With the laser power density of 95.2 mW/mm2, lowest resistance R = ~3 Ω/cm was obtained without further sintering process.
To demonstrate the capability of maskless patterning, a 1 cm  1 cm square of the textile was metallized. Following Standard ASTM D257-07, surface resistivity range from s = 69.6 Ω/□ to s = 81.2 Ω/□ were obtained. Compared with ITO, the surface resistivity is just 3-4 times higher showing the great potential for textile-based electromagnetic screening.
The last demonstration is a strain sensor. It is found that the resistance variation of the wire under 100 % strain along the wale and course direction are ~1150 % and ~30 %, respectively. This anisotropic property can be very useful in 2D strain sensing and the highly repeatable stretching-releasing characteristic under high cycles promises many potential applications in the field of smart textile.
關鍵字(中) ★ 雷射直寫
★ 緯編針織織物
★ 智慧織物
★ 導電織物
★ 銀導電油墨
★ 應變感測
關鍵字(英) ★ direct laser writing
★ weft-knitted textile
★ smart textile
★ conductive textile
★ silver conductive ink
★ strain sensing
論文目次 目錄
中文摘要..................I
Abstract............II
誌謝..................III
目錄..................IV
圖目錄..................VI
表目錄..................VIII
第一章 序論..................1
1-1 前言..................1
1-2 文獻回顧..................4
1-2-1智慧織物..................4
1-2-2導電織物製作方法..................8
1-2-3雷射直寫..................11
1-3 研究動機..................12
1-4 論文架構..................13
第二章 研究方法..................14
2-1 有機銀導電油墨..................14
2-2 雷射光加熱特性..................16
第三章 實驗設計與量測結果討論..................17
3-1 織物準備..................17
3-2 導電油墨特性量測與結果..................19
3-2-1 吸收係數量測架設..................19
3-2-2吸收係數量測結果..................20
3-2-3 雷射照射結果..................22
3-3 雷射直寫設計與結果..................25
3-3-1 銀導線製作流程與架構..................25
3-3-2 雷射直寫參數與結果..................27
3-4 銀導線寬度量測與分析..................32
3-4-1 EDS原理..................32
3-4-2 EDS量測結果與分析..................33
3-5 電性量測架設與結果..................35
3-5-1 電阻率量測架設..................35
3-5-2 電阻率量測結果..................37
3-5-3 導線拉伸-回復應變量測架設..................39
3-5-4 導線拉伸-回復應變量測結果與討論..................41
第四章 結論與未來展望..................47
4-1 結論..................47
4-2 未來與展望..................48
參考文獻..................49
參考文獻 [1] 裴文中,「周口店洞穴层采掘记」,地质专报乙种第七号,1934:1~68。
[2] E. R. Post, M. Orth, P. R. Russo, and N. Gershenfeld, “E-broidery: Design and fabrication of textile-based computing,” IBM Systems Journal, vol. 39, no. 3.4, pp. 840–860, 2000.
[3] “2011R&D 100 Award Winners,” https://www.rdmag.com/article/2011/06/2011-r-d-100-award-winners.
[4] Poupyrev, Ivan, et al. "Project Jacquard: interactive digital textiles at scale." Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 2016.
[5] “2016 R&D 100 Award Winners,” https://www.rd100conference.com/awards/winners-finalists/year/2016/.
[6] Hoen, Storrs T., Daniel D. Sunshine, Aidan N. Zimmerman, Daniel A. Podhajny, and Maurice P. May, "Fabric-Based Devices with Force Sensing," U.S. Patent Application 15/940,876, filed December 20, 2018.
[7] 沈乾龍,「智慧型紡織品」,科學發展487 期,2013年7月。
[8] M. Stoppa and A. Chiolerio, “Wearable Electronics and Smart Textiles: A Critical Review,” Sensors, vol. 14, no. 7, pp. 11957–11992, Jul. 2014.
[9] S. Park and S. Jayaraman, “Smart Textiles: Wearable Electronic Systems,” MRS Bulletin, vol. 28, no. 8, pp. 585–591, Aug. 2003.
[10] M. S. Sarif Ullah Patwary, “Smart Textiles and Nano-Technology: A General Overview,” Journal of Textile Science & Engineering, vol. 05, no. 01, 2015.
[11] A. Ankhili, X. Tao, C. Cochrane, D. Coulon, and V. Koncar, “Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG) Monitoring,” Materials, vol. 11, no. 2, p. 256, Feb. 2018.
[12] M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed Opt Express, vol. 5, no. 8, pp. 2537–2547, Jul. 2014.
[13] M. Ciocchetti et al., “Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials,” Biosensors, vol. 5, no. 3, pp. 602–615, Sep. 2015.
[14] Z. Yang et al., “Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection,” ACS Nano, vol. 12, no. 9, pp. 9134–9141, Sep. 2018.
[15] J. Lee et al., “Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics,” Advanced Materials, vol. 27, no. 15, pp. 2433–2439, 2015.
[16] V. Lebedev et al., “Investigation of sensing capabilities of organic bi-layer thermistor in wearable e-textile and wireless sensing devices,” Organic Electronics, vol. 42, pp. 146–152, Mar. 2017.
[17] L. Van der Schueren and K. De Clerck, “The Use of pH-indicator Dyes for pH-sensitive Textile Materials,” Textile Research Journal; Princeton, vol. 80, no. 7, pp. 590–603, May 2010.
[18] M. Krehel, M. Wolf, L. F. Boesel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Development of a luminous textile for reflective pulse oximetry measurements,” Biomed Opt Express, vol. 5, no. 8, pp. 2537–2547, Jul. 2014.
[19] W. Weng, P. Chen, S. He, X. Sun, and H. Peng, “Smart Electronic Textiles,” Angewandte Chemie International Edition, vol. 55, no. 21, pp. 6140–6169, May 2016.
[20] R. Torah, J. Lawrie-Ashton, Y. Li, S. Arumugam, H. A. Sodano, and S. Beeby, “Energy-harvesting materials for smart fabrics and textiles,” MRS Bulletin, vol. 43, no. 3, pp. 214–219, Mar. 2018.
[21] M. J. Yun, S. I. Cha, S. H. Seo, and D. Y. Lee, “Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth,” Scientific Reports, vol. 4, p. 5322, Jun. 2014.
[22] S. S. Kwak, H. Kim, W. Seung, J. Kim, R. Hinchet, and S.-W. Kim, “Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures,” ACS Nano, vol. 11, no. 11, pp. 10733–10741, Nov. 2017.
[23] J. A. Lee et al., “Woven-Yarn Thermoelectric Textiles,” Advanced Materials, vol. 28, no. 25, pp. 5038–5044, 2016.
[24] A. Lund, K. Rundqvist, E. Nilsson, L. Yu, B. Hagström, and C. Müller, “Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core,” npj Flexible Electronics, vol. 2, no. 1, Dec. 2018.
[25] L. Hu et al., “Lithium-Ion Textile Batteries with Large Areal Mass Loading,” Advanced Energy Materials, vol. 1, no. 6, pp. 1012–1017, 2011.
[26] M. Liu et al., “High-Energy Asymmetric Supercapacitor Yarns for Self-Charging Power Textiles,” Advanced Functional Materials, p. 1806298, 2019.
[27] Moretti, C., et al. "Electrochromic textile displays for personal communication," Smart Textiles and their Applications. Woodhead Publishing 539-568, 2016.
[28] P.-C. Hsu et al., “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett., vol. 15, no. 1, pp. 365–371, Jan. 2015.
[29] I. Krucińska, E. Skrzetuska, and W. Urbaniak–Domagała, “Printed Textiles with Chemical Sensor Properties,” Fibres & Textiles in Eastern Europe, vol. Nr 4 (106), 2014.
[30] M. Liu et al., “Large‐Area All‐Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals,” Advanced Materials, vol. 29, no. 41, Nov. 2017.
[31] M. Nusser and V. Senner, “High - tech - textiles in competition sports,” Procedia Engineering, vol. 2, no. 2, pp. 2845–2850, Jun. 2010.
[32] A. Ainla, M. M. Hamedi, F. Güder, and G. M. Whitesides, “Electrical Textile Valves for Paper Microfluidics,” Advanced Materials, vol. 29, no. 38, p. 1702894, Oct. 2017.
[33] H.-J. Park et al., “Self-Powered Motion-Driven Triboelectric Electroluminescence Textile System,” ACS Appl. Mater. Interfaces, vol. 11, no. 5, pp. 5200–5207, Feb. 2019.
[34] R. L. Peiris, “Integrated Non-light-Emissive Animatable Textile Displays,” in Smart Textiles: Fundamentals, Design, and Interaction, S. Schneegass and O. Amft, Eds. Cham: Springer International Publishing, 2017, pp. 71–101.
[35] Z. Zhang et al., “Textile Display for Electronic and Brain-Interfaced Communications,” Advanced Materials, vol. 30, no. 18, p. 1800323, 2018.
[36] S. Park et al., “Textile Speaker Using Polyvinylidene Fluoride/ZnO Nanopillar on Au Textile for Enhancing the Sound Pressure Level,” Dec-2018.
[37] 杨晨啸,李鹂,「柔性智能纺织品与功能纤维的融合」,纺织学报, 39(05), 160-169,2018。
[38] K. Cherenack and L. van Pieterson, “Smart textiles: Challenges and opportunities,” Journal of Applied Physics, vol. 112, no. 9, p. 091301, Nov. 2012.
[39] 李宜儒,「〈聚陽2018展望〉看好智慧衣商機 估5-10年後將是紡織業關鍵角色」,取自https://news.cnyes.com/news/id/4051386。
[40] 馮家慧,「利用聚酯/不鏽鋼導電織物於心電圖擷取之研究」,碩士論文,逢甲大學紡織工程所,2008。
[41] E. Korzeniewska, M. Walczak, and J. Rymaszewski, “Elements of elastic electronics created on textile substrate,” in 2017 MIXDES - 24th International Conference "Mixed Design of Integrated Circuits and Systems, pp. 447–450, 2017.
[42] W. Yang, C. Wang, and V. Arrighi, “An organic silver complex conductive ink using both decomposition and self-reduction mechanisms in film formation,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 4, pp. 2771–2783, Feb. 2018.
[43] Y. Ding, M. A. Invernale, and G. A. Sotzing, “Conductivity Trends of PEDOT-PSS Impregnated Fabric and the Effect of Conductivity on Electrochromic Textile,” ACS Appl. Mater. Interfaces, vol. 2, no. 6, pp. 1588–1593, Jun. 2010.
[44] N. Karim et al., “All inkjet-printed graphene-based conductive patterns for wearable e-textile applications,” J. Mater. Chem. C, vol. 5, no. 44, pp. 11640–11648, Nov. 2017.
[45] G. Cummins and M. P. Y. Desmulliez, “Inkjet printing of conductive materials: a review,” Circuit World, vol. 38, no. 4, pp. 193–213, Nov. 2012.
[46] J. Lapointe, M. Gagné, M.-J. Li, and R. Kashyap, “Making smart phones smarter with photonics,” Opt. Express, OE, vol. 22, no. 13, pp. 15473–15483, Jun. 2014.
[47] S. Son, J. E. Park, J. Lee, M. Yang, and B. Kang, “Laser-assisted fabrication of single-layer flexible touch sensor,” Scientific Reports, vol. 6, p. 34629, Oct. 2016.
[48] C. Pan, K. Kumar, J. Li, E. J. Markvicka, P. R. Herman, and C. Majidi, “Visually Imperceptible Liquid-Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing,” Advanced Materials, vol. 30, no. 12, p. 1706937, Mar. 2018.
[49] M. V. Allmen, Laser-Beam Interactions with Materials: Physical Principles and Applications. Springer-Verlag Berlin Heidelberg, 1987.
[50] R. M. Osgood and H. H. Gilgen, “Laser Direct Writing of Materials,” Annual Review of Materials Science, vol. 15, no. 1, pp. 549–576, 1985.
[51] S. Tanaka, S. Yamada, R. Soga, K. Komurasaki, R. Kawashima, and H. Koizumi, “Alumina reduction by laser ablation using a continuous-wave CO2 laser toward lunar resource utilization,” Vacuum, Aug. 2018.
[52] L. Constantin, L. Fan, C. Azina, K. Keramatnejad, J.-F. Silvain, and Y. F. Lu, “Effects of Laser Photolysis of Hydrocarbons at 193 and 248 nm on Chemical Vapor Deposition of Diamond Films,” Crystal Growth & Design, vol. 18, no. 4, pp. 2458–2466, Apr. 2018.
[53] W. Yang, C. Wang, and V. Arrighi, “An organic silver complex conductive ink using both decomposition and self-reduction mechanisms in film formation,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 4, pp. 2771–2783, Feb. 2018.
[54] Y. Wu, Y. Li, and B. S. Ong, “A Simple and Efficient Approach to a Printable Silver Conductor for Printed Electronics,” J. Am. Chem. Soc., vol. 129, no. 7, pp. 1862–1863, Feb. 2007.
[55] 邱經緯,「乙二醇蒸氣還原銀離子技術結合壓印製程應用於銀導線之製作」,碩士論文,國立成功大學材料科學及工程學系碩博士班,2009。
[56] 林晉毅,「以雷射還原金屬離子逕行線路圖案化於玻璃基板」,碩士論文,國立中央大學光電科學與工程學系,2017。
[57] S. B. Walker and J. A. Lewis, “Reactive Silver Inks for Patterning High-Conductivity Features at Mild Temperatures,” Journal of the American Chemical Society, vol. 134, no. 3, pp. 1419–1421, Jan. 2012.
[58] D.-Y. Wang, Y. Chang, Q.-S. Lu, and Z.-G. Yang, “Nano-organic silver composite conductive ink for flexible printed circuit,” Materials Technology, vol. 30, no. 1, pp. 54–59, Jan. 2015.
[59] O. A. Khondker, I. Herszberg, and K. H. Leong, “An Investigation of the Structure-Property Relationship of Knitted Composites,” Journal of Composite Materials, vol. 35, no. 6, pp. 489–508, Mar. 2001.
[60] 黃玲娉,梁雅卿,「機能性紡織品」,台北:紡織產業綜合研究所,2005。
[61] D.-Y. Wang, Y. Chang, Q.-S. Lu, and Z.-G. Yang, “Nano-organic silver composite conductive ink for flexible printed circuit,” Materials Technology, vol. 30, no. 1, pp. 54–59, Jan. 2015.
[62] Y. Chang, D.-Y. Wang, Y.-L. Tai, and Z.-G. Yang, “Preparation, characterization and reaction mechanism of a novel silver-organic conductive ink,” Journal of Materials Chemistry, vol. 22, no. 48, pp. 25296–25301, 2012.
[63] “Bandpass Filter Kits,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup
_id=873.
[64] M. Costa, A. M. Arruda, L. Dias, R. Barbosa, J. Mirão, and P. Vandenabeele, “The combined use of Raman and micro-X-ray diffraction analysis in the study of archaeological glass beads,” Journal of Raman Spectroscopy, vol. 50, no. 2, pp. 250–261, 2019.
[65] Yougui Liao, “Practical Electron Microscopy and Database,” 2018, www.globalsino
.com/EM/page4792.html.
[66] A. Ali et al., “Electrical conductivity and physiological comfort of silver coated cotton fabrics,” The Journal of The Textile Institute, vol. 109, no. 5, pp. 620–628, May 2018.
[67] D09 Committee, “Standard Test Methods for DC Resistance or Conductance of Insulating Materials,” ASTM International, West Conshohocken, PA, 2007.
[68] J. Wang, P. Xue, X. Tao, and T. Yu, “Strain Sensing Behavior and Its Mechanisms of Electrically Conductive PPy-Coated Fabric: Strain Sensing Behavior and Mechanisms of PPy-Coated Fabric,” Adv. Eng. Mater., vol. 16, no. 5, pp. 565–570, May 2014.
[69] R. Holm, “Electric Contacts: Theory and Application,” 4th ed. Berlin Heidelberg: Springer-Verlag, 1967.
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2019-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明